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Abstract

A framework for the analysis and control of manipulator systems with respect to the dy-
namic behavior of their end-effeclors is developed. First, we discuss tssues related {o the
description of end-effector tasks that involve consirained motion and active force control
The fundamentals of the operational space formulation are then presenied and the unified
approach for motion and force control is developed. We also present the ezlension of this
formulation lo redundant manipulaior systems, consiructing the end-effeclor equations of
motion, and describing their behavior with respect to joini forces. These resulls are used
in the development of a new and systemalic approach for dealing with the problems arising
al kinematic singularities. Al a singular configuration, the manipulaior is Ireated as a
mechanism that is redundant with respect to the motion of the end-effector in the subspace
of operational space orthogonal 1o the singular direction.

I. Introduction

Research in dynamics of robot mechanisms has largely focused on developing the equations
of joint motions. These joint space dynamic models have been the basis for various ap-
proaches to dynamic control of manipulators. However, task specification for motion and
contact forces, dynamics, and force sensing feedback, are closely linked to the end-effector.
The dynamic behavior of the end-effector is one of the most significant characteristics in
evaluating the performance of robot manipulator systems. The problem of end-effector
motion control has been investigated and algorithms resolving end-effector accelerations
have been developed [Takase 1977; Khatib, Llibre, and Mampey 1978; Hewit and Padovan
1978; Renaud, and Zabala-Iturralde 1979; Luh, Walker, and Paul 1980].

The issue of end-effector dynamic modelling and control is yet more acute for tasks that
involve combined motion and contact forces of the end-effector. Precise control of applied
end-effector forces is crucial to accomplishing advanced robot assembly tasks. This is |
reflected by the research effort that has been devoted to the study of manipulator force
control. Accommodation [Whitney 1977, joint compliance [Paul and Shimano 1976}, active
compliance [Salisbury 1980], impedance control [Hogan 1981], and hybrid position/force
control [Raibert and Craig 1981] are among the various methods that have been proposed.

Force control has been generally based on kinematic and static considerations. While in
motion, however, a manipulator end-effector is subject to inertial, centrifugal, and Coriolis
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Force control has been generally based on kinematic and static considerations. While in
motion, however, a manipulator end-effector is subject to inertial, centrifugal, and Coriolis
forces. The magnitude of these dynamic forces cannot be ignored when large accelera-
tions and fast motions are considered. Controlling the end-effector contact forces 1n some
direction can be strongly affected by the forces of coupling created by the end-effector
motion that can take place in the subspace orthogonal to that direction. The description
of the dynamic interaction between end-effector motions and the effects of these motions
on the end-effector’s behavior in the direction of force control are basic requirements for
the analysis and design of high performance manipulator control systems. Obviously, these
characteristics cannot be found in the manipulator joint space dynamic model, which only
provides a description of the interaction between joint motions. High performance control
of end-effector motion and contact forces requires the description of how motions along
different axes are interacting, and how the apparent or equivalent inertia or mass of the
end-effector varies with configurations and directions. :

The description, analysis and control of manipulator systems with respect to the dynamic
characteristics of their end-effectors has been the basic motivation in the research and
development of the the operational space formulation. The end-effector equations of motion
[Khatib 1980, Khatib 1983] is a fundamental tool for the analysis, control and dynamic
characterization [Khatib and Burdick 1985] of manipulator systems. In this paper, we will
discuss, from the perspective of end-effector control, the issue of task description, where
constrained motions and contact forces are involved. The fundamentals of the operational
space formulation are presented and the unified approach for the control of end-effector
motion and contact forces is developed.

Treated within the framework of joint space control systems, redundancy of manipulator
mechanisms has been generally viewed as a problem of resolving the end-effector desired
motion into joint motions with respect to some criteria. Manipulator redundancy has been
aimed at achieving goals such as the minimization of a quadratic criterion [Whitney 1969,
Renaud 1975], the avoidance of joint limits [Liegois 1977, Fournier 1980], the avoidance of
obstacles, [Hanafusa, Yoshikawa, and Nakamura 1981, Kircanski and Vukobratovic 1984,
Espiau and Boulic 1985], kinematic singularities [Luh and Gu 1985], or the minimization
of actuator joint forces [Hollerbach and Suh 1985]. The end-effector equations of motion
for a redundant manipulator are established and its behavior with respect to generalized
joint forces is described. The unified approach for motion and active force control is then
extended to these systems.

Kinematic singularities is another area that has been considered within the framework of
joint space control and formulated in terms of resolution of the task specifications into
joint motions. Generalized inverses and pseudo-inverses have been used, and recently an
interesting solution based on the singularity robust inverse has been proposed [Nakamura
1985]. In this paper, a new approach for dealing with the problem of kinematic singularities
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within the operational space framework is presented. In the neighborhood of a singular
configuration the manipulator is treated as a redundant mechanism with respect to the
motion of the end-effector in the subspace of operational space orthogonal to its singular
direction. Control of the end-effector for motions along the singular direction is based on
the use of the kinematic characteristic of the Jacobian matrix.

II. Generalized Task Specification Matrices

The end-effector motion and contact forces are among the most important components
in the planning, description, and control of assembly operations of robot manipulators.
The end-effector configuration is represented by a set of m parameters, z;,Z3,...,2Zm,
specifying its position and orientation in some reference frame. In free motion operations,
the number of end-¢ffector degrees of freedom, mg, is defined [Khatib 1980] as the number
of independent parameters required to completely specify, in a frame of reference Ry, its
position and orientation. A set of such independent configuration parameters forms a
system of operatfional coordinates.

Five-degrec-of-freedom

Four-degree-of-freedom

Three-degree-of-freedom

Figure 1 Constrained End-Effector Freedom of Motion.

In constrained motion operations, the displacement and rotations of the end-effector are
subjected to a set of geometric constraints. These constraints restrict the freedom of motion
(displacements and rotations) of the end-effector. It is clear that geometric constraints will
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affect only the freedom of motion of the end-effector, since static forces and moments at
these constraints can still be applied. The number of degrees of freedom of the constrained
end-effector is given by the difference between mg and the number of the independent
equations specifying the geometric constraints, assumed to be holonomic. Examples of
five, four, and three-degree-of-freedom constrained end-eflectors are shown in Figure 1.

An interesting description of the characteristics of end-effectors and their constraints uses
a mechanical linkage representation [Fournier 1980, Mason 1981]. The end-effector, tool,
or manipulated object, forms, with the fixture or constrained object, a pair of two rigid
bodies linked through a joint. A constrained motion task can be described, for instance,
by a spherical, planar, cylindrical, prismatic, or revolute joint.

However, when viewed from the perspective of end-effector control, two elements of infor-
mation are required for a complete description of the task. These are the vectors of total
force and moment that are to be applied in order to maintain the imposed constraints,
and the specification of the end-effector motion degrees of freedom and their directions.

Figure 2: One-degree-of-freedom Motion.

Let f,; be the vector, in the frame of reference Ro(J, Xo, Yo, %0), of the forces that are to be
applied by the end-effector. The positional freedom, if any, of the constrained end-effector
will therefore lie in the subspace orthogonal to f. §

A convenient coordinate frame for the description of tasks involving constrained motion

operations is a coordinate frame R (O, X, ¥y, 2s) obtained from Ro by a rotation trans-
formation described by S, such that z; is aligned with fq4. For tasks where the freedom of
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motion (displacement) is restricted to a single direction orthogonal to {4, one of the axes
Ox; or Oy, will be selected in alignment with that direction, as shown for the task in

Figure 2.

Let us define, in the coordinate frame Ry, the position specification matrix

(o, 0 0
y=|0 o 0 }; (2.1)
0 o

where o, o,, and o, are binary numbers assigned the value 1 when a free motion 1s
specified along the axes Oxy, Oyy, and Ozy respectively, and zero otherwise. A non-zero
value of o, implies a full freedom of the end-effector position. This case of unconstained
end-effector position is integrated here for completness. The coordinate frame Ry, in this
case, is assumed to be identical to Ro, and the matrix Sy is the identity matrix.

The directions of force control are described by the force specification matrix 3, associated
with £; and defined by
Yy=I-%p; (2.2)

where I designates the 3 x 3 identity matrix.

Let us now consider the case where the end-effector task involves constrained rotations
and applied moments. Let 74 be the vector, in the frame of reference Ro(O, %0, Yo, %o), of
moments that are to be applied by the end-effector, and R,(O, %, ¥r, %r) be a coordinate
frame obtained from Ro(O, X0, Yo,%0) by a rotation S, that brings gz, into alignment
with the moment vector 7q. In R, the rotation freedom of the end-effector lies in the
subspace spanned by {xr,¥-}. To a task specified in terms of end-effector rotations and
applied moments in the coordinate frame R,, we assoclate the the rotation and moment
specification matrices £, and T, defined similarly to £; and ;.

For general tasks that involve end-effector motion (both position and orientation) and
contact forces (forces and moments) described in the frame of reference Ro, we define the
generalized {ask specification malrices

STy, S 0
Q — I/ 12 .
( 0 ST zrs,> ’ (2:3)
and T
~ 0
Q= 15191 - .
( 0 ST 2,5,) ’ - (2:4)

associated with specifications of motion and contact forces, respectively.



Q and Q act on vectors described in the reference {frame Ry. A position command vector,
for instance, initially expressed in Rg is transformed by the rotation matrix Sy to the
task coordinate frame R;. The motion directions are then selected in this frame by the
application of £;. Finally the resulting vector is transformed back in Rg by S(f

The construction of the generalized task specification matrices is motivated by the aim of
formulating the selection process in the same coordinate frame (reference frame Ro) where
the manipulator geometric, kinematic and dynamic models are formulated. This allows
a more efficient implementation of the control system for real-time operations. Control
systems using specifications based only on the matrices £y and X, will require costly
geometric, kinematic, and dynamic transformations between the reference frame and the
task coordinate frames.

The task specification matrices, 2 and §~2, can be constant, configuration-varying, or time-
varying matrices. Non-constant generalized task specification matrices correspond to spec-
ifications that involve changes in the direction of the applied force vector and/or moment
vector, e.g. moving the end-effector while maintaining a normal force to a non-planar sur-
face. Q and 2 have been expressed here with respect to the frame of reference Rq. For
control systems implemented for tasks specified with respect to the end-effector coordinate
frame, these matrices will be specified with respect to that coordinate frame as well.

II. End-Effector Equations of Motion

Joint space dynamic models, which establish the equations of manipulator joint motions,
provide means for the analysis and control of these motions, and for the description of
the configuration dependency and interactive nature of these mechanisms. However, the
control of end-effector motion and contact forces, or the analysis and characterization of
end-effector dynamic performance requires the construction of the model describing the
dynamic behavior of this specific part of the manipulator system.

The end-effector motion is the result of those combined joint forces that are able to act
along or about the axes of displacement or rotation of the end-effector. These are, in-
deed, the forces associated with the system of operational coordinates selected to describe
the position and orientation of the end-effector. The construction of the end-effector dy-
namic model is achieved by expressing the relationships between its operational positions,
velocities, accelerations, and the virtual operational forces acting on it.

First, let us consider the case of non-redundant manipulators, where a set of operational
coordinates can be selected as a system of generalized coordinates for the manipulator. The-
manipulator configuration is represented by the column matrix q of n joint coordinates,
and the end-effector position and orientation is described, in a frame of; reference Ry, by
the mg x 1 column matrix x of independent configuration parametel’%, i.e. operational
coordinates. With the manipulator non-redundancy assumption we have the equality n =
mgo.
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Now let us examine the conditions under which a set of independent end-effecter config-
uration parameters can be used as a generalized coordinate system for a non-redundant
manipulator. In the reference frame Ro, the system of mg equations expressing the com-
ponents of x as functions of joint coordinates, i.c. the geomelric model, 1s given by

x = G(q) (3.1)

Let ¢. and G, be respectively the minimal and maximal bounds of the i** joint coordinate
qi- The manipulator configuration represented by the point q in joint space is confined to
the hyperparallelepiped

D, = E[gﬁ;]- (3.2)

Obviously, for arbitrary kinematic linkages, and general joint boundaries, the set of func-
tions G defined from D, to the domain D_ of the operational space given by

D: = G(D,); (3.3)

1s not one-to-one.

Different configurations of the manipulator links can, in fact, be found for a given config-
uration of the end-effector. The restriction to a domain where G 1s one-to-one is therefore
necessary in order to construct, with the operational coordinates, a system of generalized
coordinates for the manipulator mechanism.

In addition, for some configurations of the manipulator, the end-effector motion is re-
stricted by the linkage constraints and its freedom of motion locally decreases. These are
the singular configurations, which can be found by considering the differentiability char-
acteristics of the geometric model G. Singular configurations, qeDg, are those where the
Jacobian matrix J(q) involved in the variational or kinematic model associated with G,

éx = J(q)bq; (3.4)

is singular. The end-effector behavior at singular configurations is treated in section VIIL

Let ﬁ, be the domain obtained from D, by excluding the manipulator singular configu-
rations and such that the vector function G of (3.1) is one-to-one. Let D, designate the
domain _ _

D, = G(D,). (3.5)
The independent parameters z1, Z2,--.,Zm, form a complete set of configuration parame-

ters for a non-redundant manipulator, in the domain ’5, of the operational space and thus
constitute a system of generalized coordinates for the manipulator system.
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The kinetic energy of the holonomic articulated mechanism is a quadratic form of the
generalized operational velocities

1

T(x,x) = 3 xT A(x)%; (3.6)

where A(x) designates the mgxmo symmetric matrix of the quadratic form, i.c. the kinetic
energy matrix. Using the Lagrangian formalism, the end-effector equations of motion are
given by

—(53) 5= 5 (3.7)
where the Lagrangian L(x, X) is
L(x,x) = T(x,x) — U(x); (3.8)

and U(x) represents the potential energy due to gravity. F is the operational force vector.
Let p(x) be the vector of gravity forces

p(x) = VU(x). (3.9)

The end-effector equations of motion in operational space can be written [Khatib 1989,
Khatib 1983] in the form
A(x)X + p(x,X) + p(x) = F; (3.10)

where p(x, X) is the vector of end-effector centrifugal and Coriolis forces given by
psi(x, x) = (x)%; (i=1,...,mo) (3.11)

The components of the mg X mo matrices II;(x) are the Christoffel symbols 7; j1 given as
a function of the partial derivatives of A(x) with respect to the generalized coordinates x
by

1 8A;,- i Ok _ 8/‘\“.,

Tijk = 5( Oz, Oz; oz; ) (3.12)

The equations of motion (3-10) establish the relationships between positions, velocities,
and accelerations of the end-effector and the generalized operational forces acting on it.
The dynamic parameters in these equations are related to the parameters involved in the
manipulator joint space dynamic model. The manipulator equations of motion in joint

space are given by _
b ~ & ¢
A(@)3 +b(q,q) +gla) =T; (3.13)

where b(q, q), g(q), and T represent, respectively, the Coriolis and centrifugal, gravity,
and generalized forces in joint space. A(q) is the n x n joint space kinetic energy matrix.
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The relationship between the kinetic energy matrices A(q) and A(x) corresponding, respec-
tively, to the joint space and operational space dynamic models can be established [Khatib
1980, Khatib 1983] by exploiting the identity between the expressions of the quadratic
forms of the mechanism kinetic energy with respect to the generalized joint and opera-
tional velocities,

A(x) =TT (q)A(a)V " (9)- (3.14)
The relationship between the centrifugal and Coriolis forces b(q,q) and p(x,x) can be
established by the expansion of the expression of y(x,X) that results from (3.7),

p(x, %) = A(x)% — VT(x,X). (3.15)

Using the expression of A(x) in (3.14), the components of p(x,X) in (3.15) can be written

= A% = J-T(q)A(q)d — Ala)h(q,4) + T T(a)A(d)g;

. 3.16
VT(x,%x) = I~ T (q)l(q, d) + I T (a)A(a)&; (3.16)
where o
h(q,q) = J(q)q. (3.17)
and
[(a,d) = 58 40 (@F (G =1...,m) (3.18)

The subscript ,, indicates the. partial derivative with respect to the i** joint coordinate.
Observing from the definition of b(q, q) that, '

b(q, ) = A(a)q — (g, Q); (3.19)

yields,
p(x, %) = J~T(q)b(q, @) — A(a)h(q, 4)- (3.20)

The relationship between the expressions of gravity forces can be obtained using the iden-
tity between the functions expressing the gravity potential energy in the two systems of
generalized coordinates and the relationships between the partial derivatives with respect
to these coordinates. Using the definition of the Jacobian matrix (3.4) yields,

p(x) = 7 T(q)g(q)- (3:21)

In the foregoing relations, the components involved in the end-effector equations of motion
(3.10), i.e. A, 4, p, are expressed In terms of joint coordinates. This solves the ambiguity in
defining the configuration of the manipulator corresponding to a configuration of the end-
effector in the domain D, of (3.3). With these expressions, the restriction to the domain
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D., where G is one-to-one, then becomes unnecessary. Indeed, the domain of definition of
the end-effector dynamic model of a non-redundant manipulator can be extended to the
domain D; defined by . .

D, = G(Dq); (3.22)
where D, is the domain resulting frorn D, of (3.2) by excluding the kinematic singular

configurations.

Finally, let us establish the relationship between generalized forces, i.c. F and T'. Using
equations (3.14), (3.20), and (3.21) the end-effector equations of motion (3.10) can be
rewritten as

J7T(q)[4(q)q + b(q,q) +g(q)] = F- (3.23)
Substituting equation (3.13) yields

I'=J7(q)F; (3.24)

which represents the fundamental relationship between operational and joint forces con-
sistent with the end-effector and manipulator dynamic equations. This relationship is the
basis for the actual control of manipulators in operational space.

IV. End-Effector Motion Control

The control of a manipulator in operational space 1s based on the selection of the generalized
operational forces F as a command vector. These forces are produced by submitting the
manipulator to the corresponding joint forces I' obtained from equation (3.24).

As with joint space control systems, the control in operational space can be developed
using a variety of control techniques. In operational space control systems, however, er-
rors, performance, dynamics, simplifications, characterizations, and controlled variables
are directly related to manipulator tasks.

One of the most effective techniques for dealing with these highly nonlinear and strongly
coupled systems is the nonlinear dynamic decoupling approach [Freund 1975, Zabala Itur-
ralde 1978), which fully exploits the knowledge of the dynamic model structure and param-
eters. Within this framework of control and at the level of the uncoupled system, linear,
nonlinear, robust [Slotine and Khatib 1986), and adaptive [Craig, Hsu, and Shankar Sastry
1986] control structures can be implemented.

Nonlinear dynamic decoupling in operational space is obtained by the selection of the

following control structure, ,
F=F,+ Fccg; ; (4_1)
with: _

Fon=AXF,;

4.2
Fccg = ﬁ(x, ).() + ﬁ(x)’ ( )
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where, A(x), f(x,X), and P(x) represent the estimates of A(x), p(x,x), and p(x). F7,
is the command vector of the decoupled end-effector. With a perfect nonlinear dynamic
decoupling, the end-effector becomes equivalent to a single unil mass, I,,, moving in the
mo-dimensional space. In order to simplify the notations, the symbol = will be dropped
in the following development.

At the level of the decoupled end-effector, F;,, various control structures can be selected.
For tasks where the desired motion of the end-effector is specified, a linear dynamic be-
havior can be obtained by selecting ‘

F:.n = Imoid - /Cp(x - Xd) - ku(i - id); (4.3)

where x4, X4 and X4 are the desired position, velocity and acceleration, respectively, of the
end-effector. I, is the mg x mg identity matrix. k, and k, are the position and velocity
gain matrices. -

An interesting approach for tasks that involve large motion to a goal position, where a
particular path is not required, is based on the selection of the decoupled end-effector
command vector F}, as

= —ky (% — via); (4.4)

where

Vmar (45)

This allows a straight line motion of the end-effector at a given speed V.. The velocity
vector X is in fact controlled to be pointed toward the goal position while its magnitude
is limited to Vin.z. The end-effector will then travel at Vs, in a straight line, except
during the acceleration and deceleration segments. This command vector is particularly
useful when used in conjunction with the gradient of an artificial potential field for collision
avoidance [Khatib 1985].

Using the relationship between generalized forces, given in equation (3.24), the joint forces
corresponding to the operational command vector F, in equations (4.1) and (4.2), for the
end-effector dynamic decoupling and control, can be written as

I = JT(q)A(q)F;, + b(q,4d) + g(q); (4.6)

where l~)(q, q) is the vector of joint forces under the mapping into joint space of the end-
effector Coriolis and centrifugal force vector p(x,%). In order to simplify the notation,
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A has also been used here to designate the kinetic energy matrix when expressed as a
function of the joint coordinate vector q. b(q, q) is distinct from the vector of centrifugal
and Coriolis forces b(q, q) in (3.13) that arises when viewing the manipulator motion in
joint space. These vectors are related by

b(q,4) = b(q,4) — 7T (9)A(a)h(q, ). (4.7)
A useful form of E(q, q) for real-time control and dynamic analysis can be obtained by a

separation of its dependency on the position and on the velocity.

The joint space centrifugal and Coriolis force vector b(q, q) of (3.13) can, in fact, be
developed in the form

b(q, 4) = B(q)[ad] + C(q)[d’]; (4.8)

where B(q) and C(q) are, respectively, the n x n(n —1)/2, and n x n, matrices of the -
joint space Coriolis and centrifugal forces associated with b(q, q). [qq] and [¢?] are the
symbolic notations for the n(n —1)/2 x 1 and n x 1 column matrices

- T, . T
[@d] = 192 @143 ---dn—-14n] ; (49)
@@= &...a"

With [qq] and [¢?], the vector h(g, q) can be developed in the form

h(q, 4) = A1(a)[qd] + E2(q)[4’]- (4.10)

where the matrices H1(q) and H,(q) have respectively the dimensions n x n(n —1)/2 and
n x n. Finally, the vector b(q, q) can be written as

b(q, 4) = B(q)[ad) + C(a)[a%); (4.11)

where E(q) and 6’(q) are the n xn(n—1)/2 and n x n matrices of the joint forces under the
mapping into joint space of the end-effector Coriolis and centrifugal forces. These matrices
are,

B(q) = B(a) — JT(q)A(q) H1(q);

- 4.12
C(q) = C(q) — JT(q)A(q)H2(q); (412

With the relation (4.11), the dynamic decoupling of the end-effector can be obtained using

the configuration dependent dynamic coefficients A(q), E(q), é(q) and g(q). The joint
force control vector (4.6) becomes

I = JT(q)A(q)F:, + B(a)laq] + C(a)[a?] + g(q); (4.13)
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By isolating these coefficients, end-effector dynamic decoupling znd control can be achieved
‘5 a two-level control system architecture [Khatib 1985]. The real-time computation of
{hese coefficients can then be paced by the rate of configuration changes, which 1s much
lower than that of the mechanism dynamics. This leads to the following architecture for

the contro! system

e A low rate dynamic paramefer evaluation level : updating the end-effector dynamic

parameters.

o A high rate servo control level : computing the command vector (4.13) using the
updated dynamic coefficients.

This approach has also been proposed [Izaguirre and Paul 1985] for real-time dynamic
control of manipulators in joint space.

V. Constrained Motion Operations

The matrix 2, defined above, specifies, with respect to the frame of reference Rp, the
directions of motion (displacement and rotations) of the end-efiector. Forces and moments
are to be applied in or about directions that are orthogonal to these motion directions.
These are specified by the matrix €2.

An important issue related to the specification of axes of rotation and applied moments
is concerned with the compatibility between these specifications and the type of represen-
tation used for the description of the end-effector orientation. In fact, the specification
of axes of rotations and applied moments in the matrices £, and T, are only compati-
ble with descriptions of the orientation using instantaneous angular rotations. However,
instantaneous angular rotations are not quantities that can be used as a set of config-
uration parameters for the orientation. Representations of the end-effector orientation
such as Euler angles, direction cosines, or Euler parameters, are indeed incompatible with

specifications provided by . and ..

Instantaneous angular rotations have been used for the description of orientation error of
the end-effector. An angular rotation error vector §¢ that corresponds to the error between
ihe actual orientation of the end-effector and its desired orientation can be formed from
the orientation description given by the selected representation [Luh, Walker, and Paul
1980, Khatib 1980].

The time-derivatives of the parameters corresponding to a representation of the orienta-
tion are related simply to the angular velocity vector. With linear and angular velocities
is associated the matrix Jo(q), termed the basic Jacobian, defined independertly of the
particular set of parameters used to describe the end-effector configuration

() = Jola)d (5.1)

w



380

The Jaccbian matrix J(q) associated with a given representation of the end-effector ori-
entation z, can then be expressed in the form [Khatib 1980]

J(q) = E:, Jo(q); (5.2)

where the matrix E_ is simply given as a function of z,.

For end-effector motions specified in terms of Cartesian coordinates and instantaneous
angular rotations, the dynamic decoupling and motion control of the end-effector can be
achieved [Khatib 1980] by

I = J§ ()Ao(x)F7, + bo(q, &) + g(a); (53)
where Ag(q) and bo(q, ) are defined similarly to A(q) and b(q,q) with J(q) being re-.

placed by Jo(q)-

Using the relationship (5.2), similar control structures can be designed to achieve dynamic
decoupling and motion control with respect to descriptions using other representations for
the orientation of the end-effector.

The unified operational command vector for end-effector dynamic decoupling, motion, and
active force control can be written as

F = Fu + Fa+ Fecgs (5.4)

where F.,, F,, and F.., are the operational command vectors of motion, active force
control, and centrifugal, Coriolis, and gravity forces given by

Fm = Ao(q)QF;
F. = QF; + Ao(Q)2F; (5.5)
Fccg = gO(qy El) + g(q);

where F* represents the vector of end-effector velocity damping that acts in the direction
of force control. The joint force vector corresponding to F in (5.5), is

I = JT (q)[Ao(Q)(QF;, + OF7) + QF:] + bo(q, 4) + g(a)- (5.6)

The control system architecture is shown in Figure 3, where &y repreéénts the force error
gain and k,; denotes the velocity gain in F;. An effective strategy for the control of
the end-effector during the transition from free to constrained motions is based on a pure



dissipation of the energy at the impact. The operational command vector F, during the
impact {ransition control stage is
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Figure 3. Operational Space Control System Architeciure

The duration of the impact transition control is a function of the impact velocity and the
limitations on damping gains and actuator torques (this duration is typically in the order
of tens of milliseconds). Force rate feedback has also been used in F;. A more detailed
description of the components involved in this control system, real-time implementation
issues, and experimental results can be found in [Khatib and Burdick 1986].

V1. Redundant Manipulators

The configuration of a redundant manipulator cannot be specified by a set of parameters
that only describes the end-effector position and orientation. An independent set of end-
effector configuration parameters, therefore, does not constitute a generalized coordinate
system for a redundant manipulator, and the dynamic behavior of the entire redundant
system cannot be represented by a dynamic model in coordinates only of the end-eflector
configuration. The dynamic behavior of the end-effector itself, nevertheless, can still be
described, and its equations of motion in operational space can still be established.



The end-effector is affected by forces acting along or about the axes of its freedom of motion.
These are the operational forces associated with the operational coordinates selected to
describe its position and orientation. Let us consider the end-eflector dynamic response
to the application, on the end-effector, of an operational force vector F. In this case
of redundant manipulator systems, the joint forces that can be used to produce a given
operational force vector are not unique. The joint force vector

r=JT(q)F; (3.19)

represents, in fact, one of these solution.

The application of the joint forces (3.19) to the manipulator (3.13), and the use of the
relation ‘

% = J(a)d +h(q, &) (6.1)

allow us to establish [Khatib 1980] the equations of motion of the end-effector

A (qQ)X + p.(q,4) +p-(q) = F; (6.2)
where
Ar(@) = [J(@A (@I (@]
u-(q,q) = 77 (q)b(q, q) — A-(q)h(q, 9); (6.3)
p-(a) =" (q)g(a);
and

J(q) = A7 ()T (q)A-(q)- (6.4)

J(q) is actually a generalized inverse of the Jacobian matrix corresponding to the solution
that minimizes the manipulator’s instantaneous kinetic energy.

Equation (6.2) describes the dynamic behavior of the end-effector when the manipulator is
submitted to a generalized joint force vector of the form (3.19). The m x m matrix A,(q)
can be interpreted as a pseudo-kinelic energy malriz corresponding to the end-effector
motion in operational space. p,(q, q) represents the Centrifugal and Coriolis forces acting
on the end-effector, and p,(q) the gravity force vector.

The effect on the end-effector of the application of arbitrary joint forces, can be determined
by the expansion of the equation (6.2), which can be rewritten as

JT(q)[A(q)q + b(q,4q) + g(q)] = F. (6.5)

Substituting equation (3.13) yields

F=J7(q)l" (6.6)



This relationship determines how the joint space dynamic forces are reflected at the level
of the end-effector.

Lemma

The unconstrained end-effector (6.2) ts subjected {0 the operational force ¥ if and only if
the manipulator (3.13) is submsited to the generalized joinl force vector

L' =JT(q)F + [I. — JT(q)J7 (q)]T.; (6.7)

where I, is the n x n identily matriz, J(q) s the matriz given in (6.4), and T, is an
arbitrary joinl force vector.

When the applied joint forces I' are of the form (6.7), 1t is straightforward from equation
(6.6) to verify that the only forces acting on the end-effector are the operational forces
F produced by the first term in the expression of I'. Joint forces of the form [I, —
JT(q)J7(q)]T, correspond in fact to a null operational force vector.

The uniqueness of (6.7) is essentially linked to the use of a generalized inverse J(q) that
is consistent with the dynamic equations of the manipulator and end-effector. The form
of the decomposition (6.7) itself is general. A joint force vector I' can always be expressed
in the form of (6.7).

Let P(q) be a generalized inverse of J(q) and let us submit the manipulator to the joint

force vector
I'=JN(Q)F + [I, = I (q) PT(q)]T,. (6.8)

If, for any T, the end-effector is only subjected to F, equation (6.8) yields
J{@)A™H(q) = [J(a)A™ ()T T (@) PT(q); (6.9)
which implies the equivalance of P(q) and J(q).

VII. Control of Redundant Manipulators

As in the case of non-redundant manipulators, the dynamic decoupling and control of
the end-effector can be achieved by selecting an operational command vector of the form
(4.1-2). The corresponding joint forces are

I = J7(q)A,(q)F;, +b,(q,d) + g(a); (7.1)

‘where b, (q, q) is defined similarly to b(q, ).

The manipulator joint motions produced by this command vector are those that minimize
the instantaneous kinetic energy of the mechanism.



Stability Analysis

In the command vector (7.1), and with the assumption of a “perfect” compensation (or
non-compensation) of the centrifugal and Coriolis forces, the manipulator can be considered
as a conservative system subjected to to the dissipative forces due to the velocity damping
term (—k,x) in F},. These forces are

Ty, = D(q)q; (7.2)
with :
D(q) = —k,JT(@)A- (a) I (a)- (7.3)
Lyapunov stability analysis leads to the condition
4" D(q)a < 0; (1.4)

which is satisfied, since D(q) is an n X n negative semi-definite matrix of rank m. However,
the redundant mechanism can still describe movements that are solutions of the equation

4" D(q)q = 0. (7.4)

An example of such a behavior is shown in Figure 4a. The end-effector of a simulated
three-degree-of-freedom planar manipulator is controlled under (7.1). The end-effector
goal position coincides with its current position, while the three joints are assumed to have
initially non-zero velocities (0.5rad/s has been used).

Asymptotic stabilization of the system can be achieved by the addition of dissipative joint °
forces [Khatib 1980]. These forces can be selected to act in the null space of the Jacobian
matrix [Khatib 1985]. This precludes any effect of the additional forces on the end-effector
and maintains its dynamic decoupling. Using (6.7) these additional stabilizing joint forces
are of the form

T, = [l — J7(q)J7 (q)T.. (7.5)
By selecting
r,= —kqu(Q)fl, (76)
the vector I',,, becomes
Cn, =T, +J7(q)A (Q)F,.; (7.7)
with .
Fr: = kuq}.(- < (78)

Finally, the joint force command vector can be written as

T = J7(q)A.(q)(F;, + F..) + T, + b, (q,4) + g(q). (1.9)
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Under this form, the evaluation of the generalized inverse of the Jacobian matrix is avoided.
The matrix D(q) corresponding to the new expression for the dissipative joint forces Iy,
in the command vector (7.9) becomes

D(q) = —[(ks — kug)TT (A, (@) (Q) + kyoA(qQ))- (7.10)

Now, the matrix D(q) is negative definite and the system is asymptotically stable. Figure
4b shows the effects of this stabilization on the previous example of a simulated three-
degree-of-freedom manipulator.

(a) ' (5)

Figure {: Stabilization of a Redundant Manipulator.
Constrained Motion Control

The extension to redundant manipulators of the results obtained in the case of non redun-
dancy is straightforward. The generalized joint forces command vector becomes

I = JT(qQ)[A0(Q)(QF:, + QF + F,,) + QF3] + T, + b.o(q, @) + g(a); (7.11)

where A,o(q) and gro(q, q) are defined with respect to the basic Jacobian matrix Jo(q).
VII. Singular Configurations

A singular configuration is a configuration q at which some column vectors of the Jacobian
matrix become linearly dependent. The mobility of the end-eflector can be defined as the
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rank of this matrix [Fournier 1980]. In the case of non-redundant manipulators considered
here, the end-effector at a singular configuration loses the ability to move along or rotate
about some direction of the Cartesian space; its mobility locally decreases. Singularity and
mobility can be characterized, in this case, by the determinant of the Jacobian matrix.

Singularities can be further specified by the posture of the mechanism at which they occur.
Different types of singularities can be observed for a given mechanical linkage. These can
be directly identified from the expression of the determinant of the Jacobian matrix. The
expression of this determinant can, in fact, be developed into a product of terms, each of
which corresponds to a type of singularity related to the kinematic configuration of the
mechanism e.g. alignment of two links or alignment of two joint axes.

To each singular configuration there corresponds a singular “direction”. It is in this di-
rection, that the end-effector presents infinite inertial mass for displacements or infinite
inertia for rotations. Its movements remain free in the subspace orthogonal to this direc-
tion. This behavior extends, in reality, to a neighborhood of the singular configuration.
The extent of this neighbourhood can be characterized by the particular expression s(q)
in the determinant of the Jacobian matrix that vanishes at this specific singularity.

The neighborhood of a given type of singularity D, can be defined as
D, = {als(a)] < s0}; ECRY

where #q 1s positive.

x{t) [{m)

o.¢

0.2+

(a) (b)

t(sec)

o .13 o.s 0.75 1 1.13 1.3

Figure 5: Control at a Singular Configuration. -



387

The basic concept in our approach to the problem of kinematic singularities can be formu-
lated as follows:

In the neighborhood D, of a singular configuration q, the manipulator is trealed as a
mechanism that is redundant with respect to the motion of the end-effector in the subspace
of operational space orthogonal 1o the singular direction. For end-effector motion in that
subspace, the manipulator is conirolled as a reduncant mechanism. Joint forces selected
from the associated nullspace are used for the conirol of the end-effector motion along the
singular direction. When moving oul of the singularity, this is achieved by controlling the
rate of change of 5(q) according to the palue of the desired velocity for this motion af the
configuration when |s(q)| = s0. Selecting the sign of the desired rate of change of s(q)
allows the control of the manipulator posiure among the two configurations that it can
generally take when moving oul of a singularity. A position error lerm on 5(q) is used in
the control veclor for tasks that involve a motion toward goal pasitions located at, or in the
neighborhood of, the singular configuration.

Using polar or singular value decomposition, this approach can be easily extended to
redundant manipulator systems. The extension to configurations where more than one
singularity is involved can be also simply achieved. An example of a simulated two-degree-
of-freedom manipulator is shown in Figure 5a. The manipulator has been controlled to
move into and out of the singular configuration while displaying two different postures.
The time-response of the motion in the singular direction z(t) is shown in Figure Sb.

IX. Summary and Discussion

A methodology for the description of end-effector constrained motion tasks based on the
construction of generalized task specification matrices has been proposed. For such tasks
where both motion and active force control are involved, a unified approach for end-effector
dynamic control within the operational space framework has been presented. The use of
the generalized task specification matrix has provided a more efficient control structure for
real-time implementations, further enhanced by a two-level control architecture.

Results of the implementation of this approach have shown the operational space formula-
tion to be an effective means of achieving high dynamic performance in real-time motion
control and active force control of robot manipulator systems. This approach has been
implemented in an experimental manipulator programming system COSMOS (Control 1n
Operational Space of a Manipulator-with-Obstacles System). Using a PUMA 560 and wrist
and finger sensing, basic assembly operations have been performed. These include contact, -
slide, insertion, and compliance operations [Khatib, Burdick, and Armstrong 1985]. With
the recent implementation of COSMOS [Khatib and Burdick 1986] in the multiprocessor
computer system NYMPH [Chen et al. 1985], where 4 National Semiconductor 32016 mi-
croprocessors have been used, a low level servo rate of 200Hz and a high level dynamics
rate of 100Hz have been achieved.
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The impact transition control strategy was effective in the elimination of bounces at contact
with a highly stiff surface. The end-effector normal velocities 2t imapct were up to 4.0
in/sec. Experiments with square wave force input have also been conducted, and reponses
with rise times of less than 0.02 sec and steady force errors of less of 12% have been
observed. This performance has been obtained despite the limitations in controlling the
manipulator joint torques [Pfeffer, Khatib, and Hake 1986]. Accurate identification of the
PUMA 560 dynamic parameters [Armstrong, Khatib, and Burdick 1986] has contributed
to a nearly perfect dynamic decoupling of the cnd-effector. '

For redundant manipulator systems, the end-effector equations of motion have been estab-
lished, and an operational space control system for end-effector dynamic decoupling and
control has been designed. The expression of joint forces of the nullspace of the Jacobian
matrix consistent with the end-effector dynamic behavior has been identified and used for
the asymptotic stabilization of the redundant mechanism. The resulting control system
avoids the explicit evaluation of any generalized inverse or pseudo-inverse of the Jacobian
matrix. Joint constraints, collision avoidance [Khatib and Le Maitre 1978, Khatib 1985],
and control of manipulator postures can be naturally integrated in this framework cf oper-
ational space control systems. Also, a new systematic solution to the problem of kinematic
singularities has been presented. This solution constitutes 2n effective alternative to re-
solving end-effector motions into joint motions generally used in joint space based control
systems.
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