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Abstract: This paper presents a framework for dealing with the problem of object manipulation in a
system of multiple-robot manipulators. In this framework, the multi-effector/object system is treated as an
augmented object representing the total masses and inertias perceived at some operational point actuated
by the total effector forces acting at that point. This model is used for the dynamic decoupling, motion, and
active force control of the system. The allocation of forces at the level of effectors is based on minimization
of the total actuator joint force activities. The approach is extended to the case of redundant mechanisms.

1 Introduction

Object manipulation in multi-manipulator robot sys-
tems has recently received increased attention. (Al-
ford and Belyeu, 1984) studied the coordination of
two arms. Their control system is organized in a mas-
ter/slave fashion, and a motion coordination proce-
dure is used to minimize the error in the relative po-
sition between the two manipulator effectors. (Zheng
and Luh, 1986) have treated the control problem of
two manipulators as a “leader” and a “follower” sys-
tem. The joint torques of the follower are obtained
directly from the constraint relationships between the
two manipulators allowing a coordinated control of
the system.

The problem of motion and force control of multi-
ple manipulators has been investigated in (Hayati,
1986). In his proposed approach, the load is par-
titioned among the arms. Dynamic decoupling and
motion control are then achieved at the level of in-
dividual manipulator effectors. In the force control
subspace, the magnitude of forces is minimized.

(Tarn, Bejczy, and Yun; 1987) developed the closed
chain dynamic model of a two-manipulator system
with respect to a selected set of generalized joint co-
ordinates. Nonlinear feedback and output decoupling
techniques were then used to linearize and control the
system in task coordinates.

Joint space dynamic models only provide a descrip-
tion of the interaction between joint motions. The
control of object motion and active forces requires the
description of how motions along different axes are in-
teracting, and how the apparent or equivalent inertia
or mass of the object varies with configurations and
directions. In this paper, the equations of motion of a
multi-effector/object system are established and the
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unified approach for motion and active force control
(Khatib, 1987) is extended to the control of this type
of robot system. This approach is also extended to
the case of redunadnt mechanisms.

2 Outline of the Approach

Manipulator joints have been generally treated as mo-
tion generator devices. From this perspective, the

- control of the effector motion of a single manipulator

is viewed as a joint motion coordination problem. In
a multi-arm system, the problem of object manipula-
tion has been formulated similarly, i.e. coordination
of the motions of the individual arms or the individ-
ual effectors.

In the operational space framework, the control of
the end-effector is based on the selection of the oper-
ational forces génerated at the end-effector as a com-
mand vector. The relationships between these forces
and the effector inertial and gravitional forces are
used to achieve dynamic decoupling. The operational
forces are produced by submitting the manipulator to
the corresponding joint forces. In this approach, the
involvement in the control structure of the manipula-
tor joints is limited to the generation of joint forces.
Similarly, in a multi-effector system, the manipula-
tors are viewed as the mechanical support for the
effectors to provide forces and moments at the level
of the manipulated object. If the dynamics of these
effectors were negligible, the equations of motion of
the system would be given by the relationship be- -
tween the inertial and gravitional characteristics of
the manipulated object and the total effector forces
acting on it. An effector, however, is not a pure gen-
erator of forces. In motion, the effector is submitted
to significant inertial forces. These inertial forces are
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given, in the case of a single effector, by the opera-
tional space dynamic model.

A multi-effector/object system will be treated as an
augmented object representing the total masses and
inertias perceived at some operational point. This
object is submitted to the vector of total force re-
sulting from the combined action of the effectors at
that point. The dynamic behavior of this system is
described by the relationship between the vector of
total force, i.e. the command vector, and the iner-
tial and gravitional characteristics of the augmented
object.

This model is then used to achieve dynamic decou-
pling and control of the system. The realization of
the command vector is obtained by partitioning it
into a set of collinear vectors allocated to the vari-
ous effectors. The allocation of forces is based on the
minimization of the total joint actuator activities.

3 Single Effector/Object System

In this section, the framework of operational space
dynamics and control is summarized and the effect

of the manipulated object on the effector dynamics is
described.

3.1 Effector Operational Point

The position and orientation, with respect to a refer-
ence coordinate frame R.(Q,, x,, yr, 2, ), of the effec-
tor is described by the relationship between R, and a
coordinate frame R.(O, X, Ye, z.) attached to this
effector. The effector position is given by the coor-
dinate in R, of the point O., and its orientation is
defined by the rotation transformation of R, with
respect to R,. The selection of the location on the
effector of the point O, (e.g. effector center of mass,
tip) will depend on the type of operation to be per-
formed and the way this operation is specified.

O, is called the effector operational point. It is with
respect to O, that translational and rotational mo-
tions and active forces of the effector are specified.

3.2 Effector Equations of Motion

The number of independent parameters required to
completely specify, in R, the eflector configuration is
defined as the number of effector degrees of freedom.
Various representations for the position (e.g. Carte-
sian, cylindrical, or spherical) and orientation (e.g.
Euler angles, Euler parameters, direction cosines) can
be found.

An operational coordinate system associated with an
m-degree-of-freedom effector and a point O,, is a set
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x of m independent parameters describing the effector
position and orientation in a frame of reference R,.
For a nonredundant n-degree-of-freedom manipula-
tor, i.e. n = m, these parameters form a set of config-
uration parameters in a domain D of the operational
space (Khatib, 1987) and constitute, therefore, a sys-
tem of generalized coordinates. The kinetic energy of
the holonomic articulated mechanism is a quadratic
form of the generalized operational velocities

1

5 o
where A(x) designates the m x m symmetric matrix
of the quadratic form, i.e. the kinetic energy matrix.
The kinetic energy can be similarly expressed with re-
spect to other systems of generalized coordinates. Us-
ing the Jacobian matrix that relates the two systems
of generalized velocities, the relationship between ki-
netic energy matrices associated with different gen-
eralized coordinates can be established by exploiting
the identity between the two expressions of kinetic
energy. With A(q) being the kinetic energy matrix
associated with the system q of generalized joint co-
ordinates, and J(q) the Jacobian matrix associated
with the generalized operational velocities X, the ma-
trix associated with the operational coordinates x is

A(x) = J7T(a)A(q) ]~ (a)- (2)

Let F be the vector of generalized operational forces
associated with the generalized coordinates x. Using
the Lagrangian formalism, the end-efTector equations
of motion are given by

T(x, %) = =xT A(x)%;

d 0L, 0L
757 " = (3)
where the Lagrangian L(x, X) is
L(x,x) = T(x,x) = U(x); (4)

and U(x) represents the potential energy due to grav-
ity. Let p(x) be the vector of;gravity forces

p(x) = VU (x). (5)

The effector equations of motion in operational space

are given by (Khatib, 1980 and 1987)

A(x)x + I(x)[*%] + p(x) = F; (6)

II(x) represents the m x m(m + 1)/2 matrix of cen-
trifugal and Coriolis forces. The elements of the ma-
trix II(x) can be obtained from the Christoflel sym-
bols ; ;i given as a function of the partial derivatives '
of A(x) with respect to the generalized coordinates x,

S _1_(3/\,']' Ok _ 8)%.
hik = PANGE T 6x,~ Ox;

+ ). (7



The matrix of centrifugal and Coriolis forces is given
by

I(x) =
1,11 1,12 Ti1m 1,22 Ti,mm
2,11 T 12 T1m  T222 T2, mm
Tm,11 Tm,12 Tm,lm Tm,22 Tm,mm
(8)

[xx] represents the symbolic notation of the m(m +
1)/2 x 1 column matrix

[kx] = [2] 2&129... 2812, 22...22)7  (9)

3.3 Effect of a Load

The kinetic energy matrix A(x) associated with the
operational coordinates x describes the inertial char-
acteristics of the effector as perceived at the point
Q.. The addition of a load will result in an increase
in the total kinetic energy.

Let m; and I; be the mass and inertia matrix of the
load with respect to R.. The additional kinetic en-
ergy due to the load is

1
Tioad = §[mIVTV +wTnw); (10)

where v and w are the vectors of linear and angular
velocities.

The generalized operational velocities x are related
to the linear and angular velocities by a matrix E(x)
expressed as function of the operational coordinates
X,

., X:E(x)[:J (11)

The matrix E(x) is dependent on the type of coordi-
nates selected to represent the position and orienta-
tion of the effector. By introducing the column ma-
trices x, and x, defining, respectively, the selected
coordinates for the position and orientation,

x(q) = [:‘:] ; (12)
E(x) can be written as
E(x) = {Epgxp) E,?xr)] . (13)

Using equation (11), the kinetic energy due to the
load can be written in the form

1. .
Tioad = 5xTA1(X)x; (14)
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where the matrix of kinetic energy with respect to x
is

Ai(x) = ETT(x)ME7(x;) (15)
with
M = [17};1 ?I] ; (16)

where 1 and O are the unit and zero matrices of ap-
propriate dimension.

For instance, for a selection of Cartesian coordinates
and Euler angles, ie. (z,y,z,%,0,4), the matrix
E~1(x) in equation /15) is

E7G = [3 E:lo(xr)];

where
0 cosy sinysind
E7'x,)= |0 sin¢y —costysind
1 0 cosf
Lemma 1

The kinetic energy matrix of the effector and load sys-
tem is the matrix

Aeﬂector+load (X) = Aeﬁ'ector(x) + Aload(x)~ (17)

This is a straightforward implication of the evalua-
tion, with respect to the operational coordinates, of
the total kinetic energy of the system.

3.4 Effector/Object Equations of Motion

The equations of motion of the effector and load sys-
tem become

Aer1(x)X + He gt (X)[xX] + pesr(x) = F; (18)

where, using equations (7), '68), and (15), Meqi(x) is
given by

Meqi(x) = Te(x) + Mi(x). (19)

II;(x) is the m x m(m + 1)/2 matrix of centrifugal
and Coriolis forces associated with the load and ob-
tained from the partial derivatives of A;(x). Also, the
resulting gravity vector can be written as

Pe+1(X) = pe(x) + pi{x); (20)
where p;(x) is the gravity vector obtained from the

potential energy U;(x) associated with the load as in
equation (5).
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4 Multi-Effector/Object System

Let us consider the problem of manipulating an ob-
ject with a system of N robot manipulators. The ef-
fectors of each of these manipulators are assumed to
have the same number of degrees of freedom, m, and
to be rigidly connected to the manipulated object.
Let O, be the selected operational point attached to
this object. This point is fixed with respect to each
of the effectors.

Let Ai(x,) be the kinetic energy matrix associated
with the load computed as in equation (15) and ex-
pressed with respect to @, and the operational coor-
dinates x,. Let A;(x,) be the kinetic energy matrix
associated with the i*P effector.

Lemma 2

The kinetic energy matrix of the N-effector/object
system Is

N
A(xo) = M(xo) + S Ailxa). (2D)
i=1
This is simply a generalization of Lemma 1. Equation
(21) is obtained by evaluating the total kinetic energy
of the N effectors and object system expressed with

respect to the operational velocities,

1

T=2

N
. . 1, .
xZAI(xa)xo + Z -é-xZA;(xo)xo.

i=1

4.1 Multi-Effector/Object Equations of Mo-
tion

The system considered here is the system resulting
from rigidly connecting an object, to the effectors of
N n-degree-of-freedom manipulators. This system is
formed by N(n — 1) + 1 links, and one ground link
connected through Nn one-degree-of-freedom joints.
The number n, of degrees of freedom of this system
is given by the difference between the number of total
degrees of freedom of these links obtained before the
connection and the number of total degrees of free-
dom lost by the joint constraints after the connec-
tion. This number is given by the Gribler formula
(Hartenberg and Denavit, 1964),

ny = ng(njink — 1) — (no — 1)njoint§

where njink and njoint are the numbers of total links
and joints and ng is the number of degrees of freedom
of an unconnected link (3 in the planar case and 6 in
the spatial case). For the system of N n-degree-of-
freedom manipulators and object considered here,

ne =no[N(n—1)+ 1] — (ng — 1)Nn. (22)
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With the assumption of non redundancy, the number
of degrees of freedom in the planar case (no = n =
m = 3) is n, = 3. This number is n;, = 6 in the
spatial case (np = n = m = 0).

The number of operational coordinates, m, is equal to
the number of degrees of freedom, n,, of the mech-
anism. These coordinates form, therefore, a set of
generalized coordinates for the system.

The kinetic energy matrix of the system expressed
with respect to the generalized operational coordi-
nates xo is given by equation (21). The equations of
motion of the multi-effector/object system are

As(?co)io + I1,(%,)[XoXo] + Ps(X0) = Fo; (23)

where the matrix, II,(x,), of centrifugal and Coriolis
forces is obtained using equations (7), (8), and (15)

N
T (x,) = Mi(x0) + _ Mi(xo); (24)

i=1

where I1j(x,) and Ti(x,) are the m x m(m+1)/2 ma-
trix of centrifugal and Coriolis forces associated with
Ai(x,) and A;(x,) respectively. The gravity vector is

N
Ds(Xo) = Pi(%e) + Y Pi(%0); (25)

=1

where pi(x,) and pi(x,) are the gravity vectors as-
sociated with the object and the t" effector.

¢

Figure 1: A Multi-Eflector/Object System

4.2 Augmented Object Control

The equations of motion (23) establish the relation-
ships between the positions, velocities, and acceler-



ations of the multi-effector/load system and the op-
erational forces acting on it, as illustrated in Figure
1. These equations can be viewed as describing the
motion of an augmented object submitted to the oper-
ational forces F',, created by a set of effectors acting
(as m-dimensional actuators) at the operational point
0,.

The control of this object in operational space is
based on the selection of F, as a command vector.
These generalized operational forces are the resul-
tants of the forces produced by each of the N effectors
at the operational point O,.

N
Fo - ZF0.~ (26)
i=1

The effector’s operational forces F,, are generated by
the corresponding manipulator actuators. The gen-
eralized joint force vector I'; corresponding to F,, is
given by

T; = JJ (i) Fo,; (27)

where q; and JZ:(q,-) are, respectively, the vector of
joint coordinates and the Jacobian matrix computed
with respect to x, and associated with the i*" ma-
nipulator.

The dynamic decoupling and motion control of the
object in operational space is achieved by selecting
the control structure

Fo = A (%0)F 7 4 I, (%,)[XoXo) + Ps(%0);  (28)

where, K,(x,), ﬁ,(xo), and P,(x,) represent the es-
timates of A,(x,), II,(x,), and ps(x,). F; represents
the input of the decoupled system. With perfect non-
linear dynamic decoupling, the system (23) becomes
equivalent to a single unit mass, I, moving in the
m-dimensional space,

Ims(o = F;; (29)

The unified operational command vector for motion
and force control can be obtained similarly to the case
of a single manipulator (Khatib and Burdick, 1986;
Khatib, 1987). This vector will involve in addition
the generalized task specification matrices.

4.3 Allocation of Effector Forces

The control structure (28) provides the net force F,
to be applied to the augmented object at O,. The
criterion for distributing this force between effectors
will be based on the minimization of total actuator
activities.

The force vector, F,,, to be produced by the ith ef-
fector should be aligned with F, and acting in the

same direction,

Fo, = aiF,; with a; > 0. (30)
In addition, the set of N positive numbers a; must
satisfy

N
dai=1 (31)
i=1

The actuator joint forces required by the ith manip-
ulator is

;= a,'J:,I;(Qi) Fo; ; (32)

The problem now is to find the set of N positive num-
bers, ay, @z,...,an such that the overall effort of the
actuators is minimized.

Let us consider the vector of joint forces r; corre-
sponding to the total operational forces F,

ri=JT(a) Fo; (33)

7; represents the actuator joint forces that would be
assigned to the i*M manipulator, if this manipulator
alone were to produce the total operational force F,.
Let 7;; be the 7' component of 7;. Actuator joint
forces are limited. Let ¥;; be the magnitude of the
maximal bounds on the j*" actuator force of the ith
manipulator.

The number |7;;|/7;; represents a measure of the ef-
fort that will be required by the j*" actuator if the
i*" manipulator alone produced the total operational
forces F,. The effort of the ith manipulator can be
characterized by

ry = 111?x{lrij|/7,~j}; (34)

which corresponds to the greatest effort. r; is a pos-
itive number, which would be greater than one if the
requested joint forces cannot be achieved by the i*h
manipulator alone. I

In order to minimize the overall effort, the weighting
numbers o1, a9, ..., and any will be selected so that
the effort is equally distributed, that is

Q7] = QT2 = ... = ONTN. (35)

Using equation (31), this corresponds to the solution

Bi
i= ; 36
« B+ B2+ ...+ BN (36)
where
= TLTZTN 37
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5 Redundant Systems

When redundant manipulators are involved, the num-
ber of degrees of freedom of the entire system might
increase. Its configuration then cannot be specified
by a set of parameters that only describes the object
position and orientation. Therefore, the dynamic be-
havior of the entire system cannot be described by a
dynamic model in operational coordinates. The dy-
namic behavior of the augmented object itself, nev-
ertheless, can still be described, and its equations of
motion in operational space can still be established.

The number of degrees of freedom of the entire sys-
tem, n,, is given by (22). The number of degrees of
redundacy of this system can be defined by n, — m,,
where m, is the number of degrees of freedom of the
augmented object. It is important here to note that
the system resulting from the connection of a set of
individually redundant manipulators is not always re-
dundant.

The freedom of the object is restricted by the freedom
of the effectors. Let m; be the number of degrees
of freedom of the it" effector before connection to
the object. Constrained by the effectors, the object’s
number of degrees of freedom is

m, < min{m;}. (38)

The inequality in (38) reflects the fact that additional
constraints can be introduced by the connection of
effectors. Connected to the object, all effectors will
have the same number of degrees of freedom, m,.

In order to be able to arbitrarily specify the position
and orientation of the manipulated object, m, must
be equal to three in the planar case and six in the
spatial case. If n; represents the number of degrees
of freedom of the i*" manipulator; the degree of re-
dundancy of this manipulator is given by n; — m,.

5.1 Equations of Motion of a Single Manip-
ulator

Before treating the case of a multi-effector/object sys-
tem, we summarize the results in the case of a single
redundant manipulator.

5.1.1 Joint Space Equations of Motion

The equations of motion of a single manipulator in
joint space can be written in the form

A(Q)q + B(q)[qq] + g(q) = T} (39)

where A(q) is the n x n joint space kinetic energy
matrix, B(q) is the n x n(n+ 1)/2 matrix of centrifu-
gal and Coriolis forces. g(q), and T' represent, re-

spectively, the gravity, and generalized forces in joint
space.
5.1.2 Operational Space Equations of Motion

The dynamic behavior of the effector for a single re-
dundant manipulator in operational space (Khatib,
1987) can be described by

Ar(Q)x + -(q)[qq] + pr(q) = F; (40)

where
A(@) = (@A NI T (@],
O.(q) = J7(q)B(a) - A(@)H(a); (41)
pr(a) = JT(a)gla);
and
J(q) = A7 (q)IT(q)A(a). (42)
The matrix H(q) is defined by
H(q)lad] = J(@)a. (43)

J(q) is actually a generalized inverse of the Jacobian
matrix corresponding to the solution that minimizes
the manipulator’s instantaneous kinetic energy.

The mxm matrix A.(q) is defined ‘as a pseudo-kinetic
energy matrix. II,.(q) represents the matrix of Cen-
trifugal and Coriolis forces acting on the end-effector,
and p,(q) the gravity force vector.
5.2 Augmented Object in a Redundant
Mechanism

The dynamic behavior of each of the effectors is de-
scribed by an equation of the form (40), the dynamic
behavior of the augmented object system is

A (@)% + I, (q)v(X0,q) + Ps,(q) = Fo; (44)

where

N
Ai(xo) + D Ar(ai);

As (q) =
i=1
M(a) = [ (@)l [Tx(an)
Ni
ps.(a) = pz(xo)+2p;,(qf); (45)
i=1
with
v(%,q) =[x l[aran)T|. . [avan]T)T;
q = [afd] ... a}]%; (46)
and
N
Fo:ZFOi' (47)
i=1

F,, is the operational force generated by the i*h ef-
fector.
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5.3 Augmented Object Control: Redundant
Case

As in the case of a nonredundant system, the dynamic
decoupling and control of the multi-effector/object
system can be achieved by selecting an operational
command vector of the form of (28), that is

Fo = A, (Q)F} + I, (q)v(%0q) + Bs, (q0)-

The control vector F, will be distributed between the
effectors as in (30), and (31)

(48)

F,

N
. = o;F,;  with Za; =1;
i=1
where o; is selected to minimize the overall actuator
activities as in equations (36), and (37).

5.4 Stability of the Redundant Mechanism

As in the case of a single redundant manipulator
(Khatib, 1987), the stability analysis of the multi-
effector/object system shows that additional stabi-
lizing joint forces and additional gravity compensa-
tions are required to achieve asymptotic stabilization
of this system.

These joint forces must be selected appropriately in
order to preclude any effect of the additional forces on
the multi-effector/object system and to maintain its
dynamic decoupling. This can be achieved by select-
ing these forces from the null space of the Jacobian
transpose matrix associated with each manipulator.

5.4.1 Joint Forces in a Single Manipulator

Joint forces in a single manipulator system can be
decomposed into ;

r= JT(q)F + [111 - JT(Q)jT(Q)]Fo; (49)
where 1,, is the n x n identity matrix. J(q), the gen-
eralized inverse that is consistent with the equations
of motion of the manipulator and its effector, is given

by
J(@)= AN (@) /T (@ () A (@) T (a)) .

T, is an arbitrary joint force vector. Joint forces of
the form [1, — JT(q)JT(q)]T, correspond to a null
operational vector.

The generalized inverse given in equation (50) is con-
sistent with the manipulator dynamic equations and
is unique (Khatib, 1987). This generalized inverse
is obtained as a function of the manipulator kinetic
energy matrix A(q). The determination of the gener-
alized inverse associated with a manipulator involved

(50)
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in the multi-effector/object system will require the
evaluation of the inertial characteristics reflected at
that manipulator.

First let us examine how the joint space kinetic en-
ergy matrix in the case of a single manipulator is
affected by the addition of a load.

5.4.2 Effect of a Load on a Single Manipula-
tor

The addition of a load to the effector of a single ma-
nipulator will result in an increase in the kinetic en-
ergy of system.. Let Ajoad(x;) be the kinetic energy
matrix associated with the load and expressed with
respect to X,.

Lemma 3

The joint space kinetic energy matrix of a manipula-
tor with load is the matrix

Aarm+load(Q) = Aarm(Q) + [JIT(Q)Aload(xI)JI(Q)]-

, (51)
Replacing the operational velocities by their expres-
sions in terms of joint velocities, the total kinetic en-
ergy is

T= qu[A(q) +J{ (@ Mi(x)Ti(a)la.

2

5.4.3 Reflected Load

The pseudo kinetic energy matrix A, (q) describes
the inertial characteristics of the N-effector/object
system as reflected at the operational point O,.
Viewed from a given manipulator, the object and the
other effectors can be seen as a load attached at the
point O, on its effector. The additional load per-
ceived by the i*h manipulator is A, _(q) — Ai (q:)-
Following Lemma 3, the kinetic energy matrix of the
manipulator resulting from this additional load is

Ar(@) = A + IT (@A (@) = A (a:))i(qi)-

) (52)
The generalized inverse associated with the i*" ma-
nipulator and consistent with the dynamic behavior
of the multi-effector/object system is given by

Ji(a) = A7} (@) (a)Vila) AT (@I (@)™
(53)

Finally, the i*® manipulator joint forces are
i = oiJ{ (@i)Fo + [1n = JT (@) I (Q)ITi; (54)

where I';_ is an arbitrary joint force vector. Asymp-
totic stabilization of the redundant system can be



achieved by the addition of dissipative joint forces
T';,. With the gravity compensation, the vector I';,
1s

Ty, =Ty, + gi(q:). (55)
Joint constraints, link collision avoidance (Khatib,
1986), and control of manipulator postures can be
integrated naturally in the vector T';,.

6 Conclusion

The augmented object model proposed in this pa-
per constitutes a natural framework for the dynamic
modelling and control of multi-effector/object sys-
tems. In this approach, the control structure only
uses the necessary forces, i.e. net force, required
to achieve the dynamic decoupling and control of
the system. Compared to control structures where
joint motions or effector motions are individually de-
coupled and controlled, the proposed control system
presents a significant reduction in actuator activities.
Indeed, in this approach, the inertial coupling, cen-
trifugal, and Coriolis forces acting on one effector are
used to compensate for parts of the coupling forces
acting on the others. The actuator joint force activ-
ity is further minimized by the criterion used for the
allocation of effector forces.

For redundant mechanism systems, the multi-
effector/object equations of motion have been estab-
lished, and a similar control system for dynamic de-
coupling and control has been developed. The ex-
pression of joint forces acting in the nullspace of the
Jacobian matrix and consistent with the inertial char-
acteristics perceived by each mamnipulator has been
identified and used for the asymptotic stabilization
and gravity compensation of the redundant mecha-
nism.

The methodology developed in this framework consti-
tutes a powerful tool for dealing with the problem of
object manipulation in a multi-fingered hand system.
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