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The paper investigates the dynamic characteristics of redundant manipulators involving lightweight mechan-
ical structures, e.g. mini-manipulator. The effective inertia of a macro-/mini-manipulator system is shown
to be upper bounded by the inertial properties of the lightweight mini-manipulator. In the case of pris-
matic structures, the inertial properties of the combined system and the lightweight mechanism are shown
to be identical. A dextrous dynamic coordination for high bandwidth control of macro-/mini-manipulator
mechanisms is proposed. In this approach, the combined system is treated as a single redundant manip-
ulator controlled within the operational space framework. The spatial dexterity is achieved by using the
internal motions associated with the redundancy of the mechanism to minimize the deviation from the neu-
tral (mid-range) joint positions of the mini-manipulator. That is to instantaneously maximize the available
range of motion of the lightweight structure. The dynamic effects of internal motions on the end-effector are
eliminated by the use of joint forces selected from a dynamically consistent null space.

1 Introduction

This paper presents the second fold in our investigation
of inertial characteristics of robot mechanisms with com-
bined structures. Our study of systems involving in-
parallel combinations of mechanical structures, e.g. mul-
tiple manipulators, has shown (Khatib 1988) the inertial
characteristics to possess additive properties. The effec-
tive inertia expressed at some operational point of the
combined system, i.e. object and end-effectors, is given
by the sum of the effective inertias associated with the
object and the individual mechanical structures, all ex-
pressed at the same point. The dynamics of a multi--
effector Jobject system is described by an augmented ob-
Jjoct model, which represents the total mass and inertia
perceived at the operational point and actuated by the
total effector forces acting at that point.

In this paper, the focus is on the mass and inertial prop-
erties of mechanisms resulting from serial combinations
of structures, e.g. macro-/mini-manipulator. The study
of this type of mechanism falls in the general area of re-
dundant manipulators.

Redundancy is clearly important for extending a manipu-
lator’s capabilities to reach within a cluttered workspace
(anafusa, Yoshikawa, and Nakamura 1981). But be-
yond enhancing kinematic and workspace characteristics,
motion redundancy could have also a significant impact
on the manipulator’s dynamic performance. The capa-
bility of a manipulator to perform fine motions can be
significantly improved by incorporating a set of small
lightweight links, a mini-manipulator, into the manip-
ulator mechanism (Hollis, 1985; Reboulet and Robert
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1986; Tilley, Cannon, and Kraft 1986; Cai and Roth,
1987; Sharon, Hogan, and Hardt, 1988). Clearly, the
high accuracy and greater speed of a mini-manipulator
is useful for small range motion operations during which
the macro-manipulator is held motionless. During force
control operations, a mini-manipulator can also be used
to overcome manipulator errors in the directions of ac-
tive force control by using end-effector force sensing to
perform small and fast adjustments.

In this paper, we are concerned with the role of dy-
namic characteristics aspect in the analysis and control
of macro-/mini-manipulators. Tasks under consideration
extend beyond those relating to small range of motion.
This raises important questions regarding the type of
workspace needed for optimal use of the fast dynamics
of the mini-structure.

2 Inertial Properties

The inertial properties of a manipulator are generally ex-
pressed with respect to its motion in joint space. For an
n degree-of-freedom manipulator, this is the n x n con-
figuration dependent matrix, A(q), associated with the
quadratic form of its kinetic energy, 1/2 4T A(q)q, where
q and q are the vectors of joint coordinates and joint
velocities, respectively.

When concerned with the dynamic response or impact
forces at a given point on the end-effector (or manip-
ulated object), the inertial properties involved are those
evaluated at that point, termed the operational point. At-
taching a coordinate frame at the operational point and
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using the relationships between this frame and some ref-
erence frame provides a description of the configuration
(position and orientation) of the effector.

The number, m, of independent parameters needed to
describe the position and orientation of the end-effector
determines the number of degrees of freedom the end-
effector possesses. When the effector and manipula-
tor have both the same number of degrees of freedom
(n = m), the independent parameters (operational coor-
dinates) form a set of generalized coordinates, x. In this
case (that of non-redundant manipulators), the kinetic
energy of the mechanism is a quadratic form of (gener-
alized) operational velocities, 1/2 xT A(x)%, where A(x)
is the m x m kinetic energy matrix which describes the
effector’s inertial properties. The identity between the
above form and the expression of the kinetic energy in
terms of joint velocities and the use of the Jacobian ma-
trix, J(q), which establishes the relationships between
joint velocities and effector velocities, yields

A(x) = I~ T(Q)4(a)d (@)

This matrix, along with its partial derivatives with re-
spect to the operational coordinates (coefficients of cen-
trifugal and Coriolis forces), and the gravity forces act-
ing at the operational point, establishe the equations of
motion (Khatib 1980) for the effector subjected to op-
erational forces. Another representation of a manipula-
tor’s inertial properties is the generalized inertia ellipsoid
(Asada 1983), which uses the inverse of the matrix A(x).
By the nature of coordinates associated with spatial ro-
tations, operational forces acting along rotation coordi-
nates are not homogeneous with respect to moments and
vary with the type of representation used. While this
characteristic does not raise any difficulty in motion con-
trol, the homogeneity issue is important in tasks where
both motions and active forces are involved. This issue is
also a concern in the analysis of inertial properties. These
properties are, in fact, expected to be independent of the
type of representation use in the description of the end-
efector rotations. The homogeneity issue is addressed by
using the relationships between operational velocities and
instantaneous angular velocities. The Jacobian matrix
J(q) associated with a given selection, x, of operational
coordinates can be expressed (Khatib 1987) as

J(q) = E(x)Jo(a);

where the matrix Jo(q), termed the basic Jacobian, is
defined independently of the particular set of parameters
used to describe the end-effector configuration, while the
matrix E(x) is dependent upon those parameters. The
basic Jacobian establishes the relationships between gen-
eralized joint velocities ¢ and end-effector linear and an-
gular velocities v and w.

Using the basic Jacobian matrix, the mass and inertial
properties at the end-eflector are described by

Ao(x) = J5T(@)A(a)I5 ' (a)-

The effective inertia along a direction in operational
space is given by the scalar u”Ao(x)u, where uis a
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Figure 1: Effective Mass

unit vector describing the direction. In a pure trans-
lational motion of the effector, for instance, the quantity
uTAp(x)u, represents the cffective mass, Mefrective, Per-
ceived in the direction u, as illustrated in Figure 1.

Redundant Manipulators

A set of operational coordinates, which only describes
the end-effector position and orientation, is obviously not
sufficient to completely specify the configuration of a re-
dundant manipulator. Therefore, the dynamic behavior
of the entire system cannot be described by a dynatnic
model in operational coordinates. The dynamic behav-
jor of the end-effector itsell, nevertheless, can still be de-
scribed, and its equations of motion in operational space
can still be established. In fact, the structure of the ef-
fector dynamic model is identical to that obtained in the
case of non-redundant manipulators. In the redundant
case, however, the matrix Ao should be interpreted as a
“pseudo kinetic energy matrix”. This matrix is related to
the joint space kinetic energy matrix by

Ao(a) = [Jola)A™ (@)I5(a)] ™"

3 macro-/Mini-Manipulator
Systems

We now consider the case of systems resulting from se-
rial combinations of two manipulators. The manipula-
tor connected to the ground will be referred to as the
“macro-manipulator”. It has nay degrees of frecedom and
its configuration is described by the system ol nay gen-
eralized joint coordinates qas. The second manipulator,
referred to as the “mini-manipulator”, has n,, degrees of
freedom and its configuration is described by the gener-
alized coordinates q.,. The resulting structure is an n
degrec-of-freedom manipulator with 11 = nar + 1. Its
configuration is described by the system of genceralized
joint coordinates q =
number of effector degrees of freedom of the combined
structure, npe and n,, are assumed to obey
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This assumption states that the mini-manipulator must
possess full freedom of motion in the operational space.
The macro-manipulator must have at least one degree-
of-freedom.

3.1 Kinematics

The kinematics of the two manipulators, considered
separately, are described with respect to the reference
frames Ras(0) and Rpm(0)- The coordinate frames as-
sociated with their operational points are denoted Ras
and R, respectively. The transformation matrix describ-
ing the rotation between the frames Ry (0) and Ry is
Sar(qa). The operational coordinates are x s and Xm,
and Jas(aar) and Jm(qm) are the respective Jacobian
matrices. Let Jp(oy(aar) and Jm(0)(am) be the basic
Jacobian matrices associated with two individual manip-
ulators; the basic Jacobian matrix associated with the
serial combination can be expressed as

Jo =[VImw) m) (1)

where

I v, _ Sar 0
T S L

7 is the cross product operator on the position vector
associated with the mini-manipulator and expressed in
Ras(oy- 1is the 3 x 3 identity matrix.

3.2 Dynamics

The kinetic energy matrix, A(q), of the combined system
can be decomposed into diagonal blocks corresponding
to the dimensions of the two manipulators’ individual
kinetic energy matrices

T

A =
(q) [A'{; A22

It can be easily shown that the matrix Aj, of dimensions
nm X Nm in equation 3 is identical to the kinetic energy
matrix A,, associated with the mini-manipulator consid-
ered alone, i.e. A2z = Am. The inverse of the kinetic
energy matrix A(q) is

-1 _ Ay A
N - I

The operational space pseudo kinetic energy matrix Ao
associated with the linear and angular velocities is de-
fined by (JoA~'JZ)~!. Using equation 1, the inverse of
this matrix can be written as

ASt = QAL +Ac (5)
where B .
Ac =JoAcJd; (6)
and T —
- An Al
Ac = | = — 7
¢ [AxTz Azz — Av_nl] @

Theorem 1: (Reduced Effective Inertia) For k =
1,2,...,m, the operational space pseudo kinetic energy
matrices Ao (combined mechanism), and A,y(0) (mini-
manipulator) satisfy

1 As(Ao) .
1+ Acll - Ae(Ameoy) ~ Ae(Amoy) =

where A¢(.) denote the k** largest eigenvalue of (), i.e.
() € -on €000,

This theorem states that the effective inertia, in any
direction, of the combined mechanism is smaller than
or equal to the inertias associated with the mini-
manipulator.

The proof involves the two steps:

Step 1: (Eigenvalue Characteristic) This first step is
based on an important characteristic of symmetric ma-
trices. It is possible to show that (Wilkinson, 1965):
If M and M+E are n x n symmetric matrices, then for
k=12,...,n

A (M) 4+ Aa(E) < Ae(M + E) < Ae(M) + M (E);

Applying this relation to equation 3 for k=1,2,...,m,
and notirg that A,,0) and Q.‘\m(o)QT are similar pos-
itive definite matrices with the identical ecigenvalues

1/Ae(AL o)), vields

1 A(ho) 1

l1+a — ’\k(Am(O)) - ]+ﬁ (8)
where

a = /\,(Xc) - Ae(Aol);

B = A(Ac) Xe(AoL);

Step 2: (Positive Semidefinition of Ac). Let us con-
sider the symmetric matrix

ue[£ )

If £ is a nonsingular matrix, A can be decomposed
(Bruch and Parlett, 1971) following

Mol 1 0l[E 0 I E-'CT
=lce-t 1|0 D-CE-'CT]]|0 ! :

(9)
Applying this decomposition to Ac ( Ay is nonsingular,
since A-! is nonsingular), and using the relationships
between the block matrices resulting from AA™! = [
yields

o= |-l O[O} A
"C‘[ATZAL‘ 1][0 0]‘0 A

Like A, the diagonal block___‘_in is positive definite. The
decomposition ( 10) shows A¢ to be positive scnmdefinite,

'
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Figure 2: A Macro-/Mini-Structure

A(Bc) =0 and M\ (4c) 2 0. The matrix Ac which
results from a congruence transformation (equation 6) of
Ac is similarly defined, i.e. positive semidefinite with
An(Ac) =0 and M(Ac) > 0. Substituting this result in
equation 8 completes the proof of the Theorem.

Figure 2.a shows a nine degree-of-freedom manipuiator.
The magnitude of the inertial characteristics of this ma-
nipulator are bounded by the inertial characteristics of
the six degree-of-freedom mini manipulator shown in Fig-
ure 2.b.

Prismatic Manipulators

Let us consider the case of a six-prismatic joint manipula-
tor such as the one shown in Figure 3.a. The operational
space associated with this structure is of dimensions 3.
The 3 x 6 Jacobian matrix associated with this manipu-
lator is

J@=1[I I}
where I is the identity matrix.

The kinetic energy matrix associated with this manipu-
lator has the general form

An Ax?]
A= .
[ATz Az
It can be easily shown that A;y = diag(m;) and A2 =

diag(m;43), where mi is the mass of the ith link, and
Ay = Az2. The inverse of Ais

1-1 = [ (A = A2)7! —(An — A)7 1]4
’ —(An — A2)" (An— Ag)" '+ AR

Using cquations 6 and 7, the matrix Ac associated with

=

J/ (b)

Figure 3: A Prismatic Macro-/Mini-Structure

this manipulator is
Ay = A2)™t —(An— Axl) ' [T
Ke=(I I (An 22 .
c=I ] —(An — Ag2)' (An - A2a)7! Iy’
which is zero. This leads to

Corollary 1:  (Reduced Inertia/Prismatic Structurc)
For a prismatic structure, the operational space pscudo
kinetic energy matrices Ao (combined mechanism), and
Am(0) (mini-manipulator) satisfy

Me(Ao) = M(Am(o)): k= 1,2,...,m.

Using equation and noting that @ =1, yiclds

Corollary 2: (Pseudo Kinetic Energy Matrix/-
Prismatic Structure) For a prismatic structure, the op-
erational space pseudo kinetic energy matrices A (com-
bined mechanism), and Am (mini—manipulator) are iden-
tical:
Ao = A,n(o).

The inertial characteristics of the manipulator shown in
Figure 3.2 are identical to those of the threc degree-of-
freedom mini manipulator shown in Figure 3.b.

4 Dextrous Dynamic Coordina-
tion

The previous results show that the inertial characteris-
Lics of the combined system are upper bounded Ly (and,
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for prismatic structure, identical to) those of the mini-
manipulator. Given the mechanical limits on the range
of joint motions of the mini-manipulator, these charac-
teristics are only useful within this available range. .
The control in operational space of the macro-/mini-
manipulator treated as a single redundant manipulator
will result in a fast dynamic response, which will be es-
sentially carried out by the mini-structure. These dy-
namic characteristics are well maintained until the mini-
structure’s joints reach their limits. Maximizing the
mini-manipulator’s available range of motion is therefore
essential for extending this performance to tasks with
large range of motion.

The proposed dextrous dynamic coordination is based on
the minimization of the deviation from the neutral (mid-
range) joint positions of the mini-manipulator. This min-
imization is achieved by controlling the manipulator’s in-
ternal motions, while the end-eflector is performing its
task. Eliminating the dynamic interaction between these
two tasks is a primarily concern.

4.1 Consistent Null Space

End-effector motions are controlled by operational forces,
F, created by the application of a set of generalized joint
forces, ', given by I' = JT(q)F. For redundant manipu-
lators, the previous relationship becomes incomplete. At
a given configuration, there is an infinity of elementary
displacements of the redundant mechanism that could
take place without altering the configuration of the ef-
fector. Those displacements correspond to motion in the
null space associated with a generalized inverse of the
Jacobian matrix.

In terms of forces, there is also an infinity of joint force
vectors that could be applied without ‘effecting the re-
sulting forces reflected at the end-effector. Those are the
joint forces acting within the null space. The general ex-
pression for the relationship between end-effector forces
and generalized joint forces is

L= JT(QF + [ - JT(@)J* (@))To; (11

where T'g is an arbitrary generalized joint force vector.
While F is used for end-effector control, the joint torque
vector T'p provides means to control the manipulator in-
ternal joint motions. '

The previous relationship (11), which is based only on
static considerations, provides a freedom in the selection
of the generalized inverse (J# such that J = JJ#J).
Taking into account the effector’s dynamics results in an
additional constraint, reducing this freedom. The addi-
Lional constraint is concerned with end-effector acceler-
ations. Analysis of equations of motion shows that the
effector acceleration corresponding to the application of
a joint torque vector T is J(q)A~'(q)T. In order for the
dynamic effects of the joint forces associated with null
space to be canceled, it is necessary for the null space to
satisly

ST (@A QU = IT(@T# (@)oo =0. (12)

The null space associated with a generalized inverse sat-
isfing the above constraint is said to be dynamically con-
sistent.

Theorem 3: (Dynamic Consistency) A generalized in-

verse that is consistent with the dynamic constraint of

equation 12, 7(q), is unique and given by

T(q) = A~ (@I (Q)A(Q)- (13)

7J(q) in equation 13 is actually a generalized inverse of the
Jacobian matrix corresponding to the solution that min-
imizes the manipulator’s instantaneous kinetic energy. A
Joint force vector of the form [I — JT(q)IT(q)]T, not
only corresponds to a zero-vector of operational forces at
static equilibrium, but also during motion.

4.2 Internal Motion Control

The joint force vector 'y can now be used to maximize

the range of motion available at the mini-structure. Let

g; and g, be the upper and lower bounds on the i*? joint
position g;. We construct the potential function

n _

q; + 9.

chxtroun(Q) = kq Z (q:’ - = 9 =

i=nartl

Vi (14)

where kg is a constant coefficient. The gradient of this
function

(15)
provides the required attraction (Khatib 1986) to the
mid-range joint positions of the mini-manipulator. The
interference of these additional torques with the end-
effector dynamics is avoided by selecting them from the
null space. This is

Tpextrous = —V Vpextrous;

I--‘nd = [In - JT(Q)jT(Q)]FDcxtrour (16)
The avoidance of joint limits can be achieved using an
“artificial potential field” function. Asymptotic stabi-
lization of the redundant mechanism requires additional
dissipative joint forces which should also be selected from
the dynamically consistent null space.

It is essential that the range of motion of the joints asso-
ciated with the mini-structure allows accommodation for
the relatively slower dynamic response of the arm. A suf-
ficient motion margin is required for achieving dextrous
dynamic coordination.

5 Conclusion

The dynamic analysis of mechanisms with serial com-
binations of structures has shown the inertial proper-
ties to be upper bounded by the properties associated
with the set of last links that spans the eflfector’s oper-
ational space. The effective inertias of a macro-/mini-
manipulator are bounded by those of the lightweight
mini-manipulator considered alonc.
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Treating the manipulator and mini-manipulator as a sin-
gle redundant system, a dextrous dynamic coordination
based on minimizing the deviation from the neutral (mid-
range) joint positions of the mini-manipulator has been
proposed. In order to preclude any effect of the forces
used to achieve the spatial dexterity on the primary
task, this minimization uses joint forces selected from
a dynamically consistent null space. We intend to im-
plement this approach on ARTISAN, a ten degree-of-
freedom macro-/mini-manipulator (Roth et al. 1988,
Waldron et al. 1987) currently under construction at
Stanford.
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