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The Operational Space Framework*

Oussama KHATIB**

Robot dynamics has been traditionally viewed from the perspective of a
manipulator’s joint motions, and significant effort has been devoted to the
development of joint space dynamic models and control methodologies.
However, the limitations of joint space control techniques, especially in
constrained motion tasks, have motivated alternative approaches for dealing
with task-level dynamics and control. The operational space formulation,
which falls within this line of research, has been driven by the need to
develop mathematical models for the description, analysis, and control of
robot dynamics with respect to task behavior. In this article, we review the
operational space task-level models and discuss the various control metho-
dologies that have been developed in this framework. These include: the
unified motion and force control approach ; the notion of dynamic consis-
tency in redundant manipulator control ; the reduced effective inertia prop-
erty associated with macro-/mini-manipulator systems and the dextrous
dynamic coordination strategy proposed for their control ; and the augment-
ed-object model for the control of robot systems involving multiple manipu-

lators.
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1. Introduction

The difficulty with joint space control techniques
lies in the discrepancy between the space where robot
tasks are specified and the space in which the control
is taking place. By its very nature, joint space control
calls for transformations whereby joint space descrip-
tions are obtained from the robot task specifications.
Typically, a joint space control system is organized
following the general structure shown in Fig. 1. At the
highest level, tasks are specified in terms of end-
effector or manipulated object’s motion, compliances,
and contact forces and moments. Tasks are then
transformed at the intermediate level into descrip-
tions in terms of joint positions, velocities, accelera-
tions, compliances, and joint torques. This provides
the needed input to the control level, which acts at the
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robot joints. The task transformation problem as-
sociated with joint space control has been the basic
motivation for much of the early work in task-level
control schemes®-®.

Motion/Force Control : Beyond the costly transfor-
mations it requires, joint space control is incompatible
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with the requirements of constrained tasks, which
involve simultaneous motion and force control. Joint
space dynamic models provide a description of the
dynamic interaction between joint axes. However,
what is needed in the analysis and design of force
control algorithms is a description of the dynamic
interaction between the end-effector or manipulated
object and mating parts.

In the absence of such descriptions, most of the
research in force control has been driven by kinematic
and static considerations. Compliant motion control
has been achieved through the use of inner loops of
position or velocity control®*®. While position-based
or velocity-based compliant motion control have been
successfully used in many quasi-static operations,
their performance in dynamic tasks has been very
limited. The gain limitation associated with these
techniques has generally resulted in slow and sluggish
behavior. Hybrid position/ force control” and non-
dynamic implementations of impedance control have
also resulted in limited dynamic performance.

Dealing with dynamics is essential for achieving
higher performance. In free motion, the effects of
dynamics increase with the range of motion, speed,
and acceleration at which a robot is operating. In part
mating operations, dynamics effects also increase
with the rigidity of the mating object. Furthermore,
control of the end-effector contact forces in some
direction is affected by the inertial forces caused by
end-effector motion in the subspace orthogonal to
that direction. These effects must.be taken into
account to achieve higher performarice.

There is a clear need for the development of
dynamic models for robot behavior at the end-
effector, manipulated object, or task level. This has
been precisely the motivation behind the development
of the operational space formulation®. In this frame-
work, both motions and active forces are addressed at
the same level of end-effector control. The result is a
unified approach for dynamic control of end-effector
motions and contact forces. This approach is present-
ed in Sec. 4.

Redundancy and Singularities: The joint space
task transformation problem is exacerbated for mech-
anisms with redundancy or at kinematic singularities.
The typical approach involves the use of pseudo- or
generalized inverses to solve an under-constrained or
degenerate system of linear equations, while optimiz-
ing some given criterion®-"?. Other inverses with
improved performance also have been investigated,
e.g., the singularity robust inverse“?.

In Sec.5, we present the extension of the opera-
tional space formulation to redundant mechanisms
and discuss the control strategy developed in this
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framework for dealing with kinematic singularities.
The control of redundant manipulators relies on two
basic models : a task-level dynamic model obtained by
projecting the manipulator dynamics into the opera-
tional space, and dynamically consistent force/torque
relationship that provides decoupled control of joint
motions in the null space associated with the redun-
dant mechanism. These two models are also critical
for implementing the coordination strategy for macro-
/mini-manipulator systems and the control strategy
for kinematic singularities. In fact, at singular
configurations, a manipulator is treated as a redun-
dant mechanism in the subspace orthogonal to the
singular direction.

Macro-/Mini-Manipulator Systems: High-perfor-
mance control of forces and motions requires a robot
structure to have a high mechanical bandwidth. Incor-
porating lightweight links, i.e., a mini-manipulator, at
the end of the arm can greatly improve this bandwidth
and significantly increase the ability of the manipula-
tor to perform fine motions"*'*. Clearly, the higher
accuracy and greater speed of a mini-manipulator are
useful for small motion operations, during which the
rest of the manipulator can be held motionless. In
force control operations, a mini-manipulator can be
used to overcome manipulator errors in the directions
of force control by using end-effector force sensing to
perform small and fast adjustments. However, the
improvement in dynamic performance with light-
weight links is not limited to tasks with small range of
motion or to force control operations.

The difficulty with operations covering a wide
range of motion is due to the mechanical limits on
joint motions of the mini-manipulator. Indeed, high
mechanical bandwidth is only available within the
range of mini-manipulator motions. An effective
strategy for dextrous coordination of motion between
the macro and mini structures is therefore essential
for maintaining the high bandwidth characteristic of
the overall system"®. In Sec. 6, we discuss the inertial
properties of macro-/mini-manipulators and present
a general methodology for their coordination and
control.

Multi-Arm Systems: Another area of growing
interest is multi-arm robot systems. Multi-arm con-
trol has been generally treated as a motion coordina-
tion problem. One of the first schemes for the control
of a two-arm system'® was organized in a master/
slave fashion, and used a motion coordination proce-
dure to minimize errors in the relative position of the
two manipulators. In another study"”, one manipula-
tor was treated as a “leader” and the other as a
“follower”. Control of the follower was based on the
constraint relationships between the two manipula-
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tors. In contrast, the two manipulators were given a
symmetric role in the coordination proposed by
Uchiyama and Dauchez®. The problem of controlling
both motion and force in multi-arm systems has been
investigated by Hayati®®. In the proposed approach,
the load is partitioned among the arms. Dynamic
decoupling and motion control are then achieved at
the level of individual manipulator effectors. In the
force control subspace, the magnitude of forces is
minimized. Tarn, Bejczy, and Yun®® developed a
closed chain dynamic model for a two-manipulator
system with respect to a selected set of generalized
joint coordinates. Nonlinear feedback and output
decoupling techniques were then used to linearize and
control the system in task coordinates. In Sec. 7, we
present the augmented object model, which extends
the operational space approach to multi-arm robot
systems.

2. Operational Space: Basic Concepts

The basic idea in the operational space
approach®? is to control motions and contact forces
through the use of control forces that act directly at
the level of the end-effector. These control forces are
produced by the application of corresponding torques
and forces at the manipulator joints.

For instance, subjecting the end-effector to the
gradient of an attractive potential field will result in
joint motions that position the effector at the
configuration corresponding to the minimum of this
potential field. This type of control can be shown to be
stable. However, the dynamic performance of such a
control scheme will clearly be limited, given the iner-
tial interactions between the moving links.

High performance control of end - effector
motions and contact forces requires the construction
of a model describing the dynamic behavior as per-
ceived at the end-effector, or more precisely at the
point on the effector where the task is specified. This
point is called the operational point.

A coordinate system associated with the opera-
tional point is used to define a set of operational
coordinates. A set of operational forces acting on the
end-effector is associated with the system of opera-
tional coordinates selected to describe the position
and orientation of the end-effector. The construction
of the end-effector dynamic model is achieved by
expressing the relationship between its positions,
velocities, and accelerations, and the operational
forces acting on it.

The operational forces are produced by submit-
ting the manipulator to the corresponding joint forces,
using a simple force transformation. The use of the
forces generated at the end-effector to control
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motions leads to a natural integration of active force
control. In this framework, simultaneous control of
motions and forces is achieved by a unified command
vector for controlling both the motions and forces at
the operational point.

The operational space robot control system is
organized in a hierarchical structure, as shown in Fig.
2, of three control levels:

® Task Specification Level : At this level, tasks are
described in terms of motion and conatct forces
of the manipulated object or tool.

@ Effector Level : This level is associated with the
end-effector dynamic model, the basis for the
control of the end-effector motion and contact
forces. The output here is the vector of joint
forces and torques to be produced by the joint
level in order to generate the operational forces
and moments associated with the end-effector
control vector.

@ Joint Level: This level is formed by the set of
individual joint torque controllers, allowing each
joint to produce its assigned torque component
for producing the vector of joint torques corre-
sponding to the end-effector control vector.

3. Operational Space Dynamics

The dynamic equations of a manipulator are
generally expressed with respect to its motion in joint
space. For an » degree-of-freedom manipulator, the
joint space inertial properties are described by the » X
n configuration dependent matrix, A(q), associated
with the quadratic form of its kinetic energy,
1/2¢"A(q) g, where q and ¢ are the vectors of joint
positions and joint velocities, respectively. The joint
space equations of motion may be written

Alg)g+b(q, g)+g(q)=T"; (1)
where b(q, q) is the vector of centrifugal and Coriolis

Task Specification

A ‘ Motion/Force
v Commands
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joint-forces and g(q) is the gravity joint-force vector.
I' is the vector of generalized joint-forces.
3.1 End-effector equations of motion

When the dynamic response or impact force at
some point on the end-effector or manipulated object
are of interest, the inertial properties involved are
those evaluated at that point, termed the operational
point. Attaching a coordinate frame to the end-
effector at the operational point and using the rela-
tionships between this frame and the reference frame
attached to the manipulator base provides a descrip-
tion, x, of the configuration, i.e. position and orienta-
tion, of the effector.

The number, m, of independent parameters need-
ed to describe the position and orientation of the end-
effector determines its number of degrees of freedom.
When the effector and manipulator have both the
same degree of freedom, ie., n=m, the operational
coordinates, x, form a set of generalized coordinates
for the mechanism®?" in a domain of the workspace
that excludes the kinematic singularities. In this case,
the kinetic energy of the mechanism is a quadratic
form of the generalized operational velocities,
1/227A(x) %, where A(x) is the m X m kinetic energy
matrix associated with the operational space.

The operational space kinetic energy matrix
A(x) provides a description of the inertial properties
of the manipulator at the operational point. The rela-
tionship between the matrices A(x) and A(q) can be
established by stating the identity between the two
quadratic forms of kinetic energy and by using the
relationship between joint velocities and effector
velocities, which involves the Jacobian matrix, J ().
This yields

ANx)=]""(@)Ala)] (@) (2)

The matrix A(x), along with its partial deriva-
tives with respect to the operational coordinates
(coefficients of centrifugal and Coriolis forces), and
the gravity forces acting at the operational point,
establish the equations of motion®®" for the effector
subjected to operational forces, F. These equations
are

Ax)i+plx, 2)+plx)=F; (3)
where u(x, #) and p(x) are respectively the centrifu-
gal and Coriolis force vector and the gravity force
vector acting in operational space.

3.2 Basic dynamic model

By the nature of coordinates associated with
spatial rotations, operational forces acting along rota-
tion coordinates are not homogeneous to moments
and vary with the type of representation being used
(e.g. Euler angles, direction cosines, Euler parame-
ters). While this characteristic does not raise any
difficulty in free motion operations, the homogeneity
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issue is important in tasks where both motions and
active forces are involved. This issue is also a concern
in the analysis of inertial properties. These properties
are, in fact, expected to be independent of the type of
representation used for the description of the end-
effector orientation.

The homogeneity issue is addressed by using the
relationships between operational velocities and
instantaneous angular velocities. The Jacobian matrix
J(q) associated with a given selection, x, of opera-
tional coordinates can be expressed®? as

J(@)=E(x)]oa); (4)
where the matrix Jo(q), termed the basic Jacobian, is
defined independently of the particular set of parame-
ters used to describe the end-effector configuration,
while the matrix E(x) is dependent upon those param-
eters. The basic Jacobian establishes the relationships
between generalized joint velocities @ and end-
effector linear and angular velocities v and w.

8Q[Z]=fo(Q)d. , (5)

Using the basic Jacobian matrix, the mass and inertial
properties at the end-effector are described by

No(x)=75"(a)Ala)]5'(q). (6)
The above matrix is related to the kinetic energy
matrix associated with a set of operational coordi-
nates, x, by

Ax)=E "(x)Aolx)E " (x). (7)
Like angular velocities, moments are defined as
instantaneous quantities. A generalized operational
force vector F associated with a set of operational
coordinates, x, is related to forces and moments by

Fal} |-ET@F; (8)

where F and M are the vectors of forces and
moments. With respect to linear and angular veloc-
ities, the end-effector equations of motion can be
written as
No(x) 9+ o, 9)+ polx)=Fo ; (9)

where Ao(x), wo(x, 9), and po(x) are defined similarly
to A(x), (x, ), and p(x) using Jo(q) instead of J(a).
In Eq.(9), the dynamics of the end-effector is de-
scribed with respect to linear and angular velocities.
Therefore, a task transformation of the description of
end-effector orientation is needed. Such a transforma-
tion involves the inverse of E(x) and its derivaties®.

4. Unified Motion and Force Control

Equation (9) is the basis for the development of
the unified approach for motion and force control.
Compliant motion and part mating operations involve
motion control in some directions and force control in
orthogonal directions, as illustrated in Fig.3. Such
tasks are described by the generalized selection

JSME International Journal



matrix® Q and its complement 2 associated with
motion control and force control, respectively. Using
Eq. (9), the end-effector/sensor equations of motion
can be written as

Aolx)8+ oz, )+ polx) + 2F = F,. (10)
The vector QF; represents the constraint forces act
ing at the end-effector. The unified approach for end-
effector dynamic decoupling, motion and active force
control is achieved by selecting the control structure

Fo= Frovon + Factive-torce ; (11)
where

Fmotlon=/io(x)QFnTotion+ /70(.2', L9)+ﬁo(-l‘) ) (12)

Faclixe—force = /Io(x)QFe%tive—force + QF sesirea ;o (13)
where, Ao(x), Zo(x, &), and po(x) represent the esti-
mates of Ao(x), m(x, #), and po(x). The vectors
Fiuon and Fiuve-orce Tepresent the inputs to the
decoupled system. The generalized joint forces I’
required to produce the operational forces F, are

r=Jj{q)Fo. (14)
With perfect estimates, the resulting closed loop sys-
tem is described by the following two decoupled sub-
systems :

Q9= QF ¥on ; (15)

.@((9 + Fs)= Q(Fdesired + Fafuve-rorce). (16)

The unified motion and force control system is
shown in Fig. 4. To further enhance the efficiency of
the real-time implementation, the control system is
decomposed into two layers—a low rate dynamic
parameter evaluation layer, updating the dynamic
parameters, and a high rate servo control layer that
computes the command vector using the updated

Zy

X0

Fig.3 A constrained motion task
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dynamic coefficients. This is achieved by factoring the
equations of motion into the product of a matrix with
coefficients independent of the velocities, and a vector
which contains the velocity terms. The matrix of
coefficients is then given as a function of the
manipulator’s configuration. With this separation of
the velocity and configuration dependency of the
dynamics, the real-time computation of the equations
of motion coefficients can be paced by the rate of
configuration changes, which is much lower than that
of the mechanism dynamics.

5. Redundant Manipulators

A set of operational coordinates, which only
describes the end-effector position and orientation, is
obviously insufficient to completely specify the
configuration of a redundant manipulator. Therefore,
the dynamic behavior of the entire system cannot be
described by a dynamic model using operational coor-
dinates. Nevertheless, the dynamic behavior of the
end-effector itself can still be described, and its equa-
tions of motion in operational space can still be estab-
lished. In fact, the structure of the effector dynamic
model has been shown®®) to be identical to that
obtained in the case of non-redundant manipulators
(given in Eq. (3)). In the redundant case, however,
the matrix A should be interpreted as a “pseudo
kinetic energy matrix”. As shown below, this matrix
is related to the joint space kinetic energy matrix by

A @)=J(@)A (a)] (q). 1n

The above relationship provides a general expres-
sion for the matrix A that applies to both redundant
and non-redundant manipulators. While Eq. (3) pro-
vides a descfiption of the whole system dynamics for
non-redundant manipulators, the equation associated
with a redundant manipulator only describes the
dynamic behavior of its end-effector. In that case, the
equation can be thought of as a “projection” of the
system’s dynamics into the operational space. The
remainder of the dynamics will affect joint motions in
the null space of the redundant system. This analysis
is discussed below.

Fdied_l. Force
-

Control|

19desired

(X, ﬂ)desired Motion
+ Control

motion

Fo
Robot Forward |/
i & Kinematics (X, 19)
Environment =

Gravity, Coriolis|
& Centrifugal
Compensation

Fig.4 Unified motion and force control structure
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The operational space equations of motion
describe the dynamic response of a manipulator to the
application of an operational force F at the end-
effector. For non-redundant manipulators, the rela-
tionship between operational forces, F, and joint
torques, I is

r=j"(g)F. (18)
However, this relationship becomes incomplete for
redundant manipulators that are in motion. Analysis
of the kinematic aspect of redundancy shows that at a
given configuration, there is an infinity of elementary
displacements of the redundant mechanism that could
take place without altering the configuration of the
effector. Those displacements correspond to motion in
the null space associated with a generalized inverse of
the Jacobian matrix.

There is also a null space associated with the
transpose of the Jacobian matrix. When the redundant
manipulator is not at static equilibrium, there is an
infinity of joint torque vectors that could be applied
without affecting the resulting forces at the end-
effector. These are the joint torques acting within the
null space of J7(q). With the addition of null space
joint torques, the relationship between end-effector
forces and manipulator joint torques takes the follow-
ing general form

r=/"(@)F~+[I-]"(@)] (@)]I}; (19)
where I is an arbitrary generalized joint torque
vector, which will be projected in the null space of JT,
and J*" is a generalized inverse of /7. Clearly, Eq. (19)
is dependent on J*' and there is an infinity of general-
ized inverses for J7, namely, {/*" | ]TéJT]”']T}. How-
ever, only one of these generalized inverses is consis-
tent with the system dynamics. It has been shown®
that in order for the joint torque vector Ip to be
precluded from producing any dynamic effect at the
operational point, it is necessary that

J(@) A (I T ()] ()] [v=0. (20)

A generalized inverse of J(gq) satisfying the above
constraint is said to be dynamically consistent”®.
Theorem 1 : (Dynamic Consistency)

A generalized inverse that is consistent with the
dynamic constraint of Eq. (20), J (@), is unique and is
given by

J(@)=A" ()] (@) Aa), (21)
The proof is based on a straightforward analysis of
Eq. (20).

Notice that J (g) of Eq. (21) is actually the gener-
alized inverse of the Jacobian matrix corresponding
to the solution of dx=/(q)dq that minimizes the
manipulator’s instantaneous kinetic energy.

5.1 Equations of Motion of Redundant Manipu-
lators

The end-effector equations of motion for a redun-
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dant manipulator are of the same form as Eq. (3)
established for non-redundant manipulators. In this
case, however, the inertial properties vary not only
with the end-effector configuration, but also with the
manipulator posture.

Aq) & +u(a, §)+p(q)=F; (22)
where

w(a, @)=T(q)bla, ¢)— M) ] (@)g;  (23)

p(a)=7T (@)g(a). (24)

Equations (22) provide a description of the dynamic
behavior of the end-effector in operational space.
These equations are simply the projection of the joint
space equations of motion (1), by the dynamically
consistent generalized inverse J(a),

T (a)A(@)d+blg, 4)+9(@)=T]

= AMq)¥+u(q, ¢)+p(a)=F; (25)
5.2 Dynamically consistent torque/force rela-
tionship

The dynamically consitent relationship between
joint torques and operational forces for redundant
manipulator systems is

r=j"(g)F+I-J"(@) ] (a)llv; (26)
This relationship provides a decomposition of joint
torques into two dynamically decoupled control
vectors : joint torques corresponding to forces acting
at the end-effector (J7F) ; and joint torques that only
affect internal motions, ([/—/J7(q)J "(@)]Ib). Using
this decomposition, the end-effector can be controlled
by operational forces, while internal motions can be
indepepdently controlled by joint torques that are
guaranteed not to alter the end-effector’s dynamic
behavior. This relationship is the basis for implement-
ing the dextrous dynamic coordination strategy for
macro-/mini-manipualators discussed in Sec. 6.

5.3 Singular configurations

A singular configuration is a configuration ¢ at
which the end-effector mobility—defined as the rank
of the Jacobian matrix—locally decreases. At a singu-
lar configuration, the end-effector locally loses the
ability to move along or rotate about some direction
of the Cartesian space.

Singularity and mobility are characterized by the
determinant of the Jacobian matrix for non-redun-
dant manipulators; or by the determinant of the
matrix product of the Jacobian and its transpose for
redundant mechanisms. This determinant is a func-
tion, s(q), that vanishes at each of the manipulator
singularities. This function can be further developed
into a product of terms,

s(@)=s1(q) s:(@)s:(@) - snl@); 2n
each of which corresponds to one of the different types
of singularities associated with the kinematic con-
figuration of the mechanism, e.g., alignment of two
links or alignment of two joint axes. #s is the number
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of different types of singularities. To a singular
configuration there corresponds a singular direction.
It is in or about this direction that the end-effector
presents infinite effective mass or effective inertia.
The end-effector movements remain free in the sub-
space orthogonal to this direction. In reality, the
difficulty with singularities extends to some neighbor-
hood around the singular configuration, as illustrated
in Fig. 5. The neighborhood of the /" singularity, Ds,
can be defined as

Ds={alls{a)l<n}; (28)
where 7 is positive. The basic concept in our
approach to end-effector control at kinematic singu-
larities can be described as follows:

In the neighborhood D, of a singular
configuration g, the manipulator is treated as a
redundant system in the subspace orthogonal to
the singular direction. End-effector motions in
that subspace are controlled using the operational
space redundant manipulator control. s; is treated
as a new task coordinate. This coordinate is used
in the control of end-effector behavior along the
singular direction. The control is implemented
using the dynamically consistent joint torques
acting in the null space associated with the redun-
dancy.

Moving the end-effector to a singular configu-
ration, for instance, is achieved by a control that takes
s{g) to zero. One strategy®’ for moving the end-
effector out of a singularity is to control the rate of
si(@). With the two possible assignments of the sign
for the desired rate of s/(q), it is possible to select the
posture of the manipulator among the two
configurations that it can generally take when moving
out of a singularity. The rate of s:(g) should be
selected according to the desired velocity at the
configuration when |si{(g)|=7;, in order to achieve a
smooth transition when crossing the singularity neigh-
borhood.

Fig. 5

Kinematic singularities
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6. Macro-/Mini-Manipulator Systems

A macro-/mini-manipulator can be viewed as the
mechanism resulting from the serial combination of
two manipulators. As illustrated in Fig. 6a, the manip-
ulator connected to the ground is the macro-manipu-
lator, and the second manipulator, refered to as the
mini-manipulator, is the structure formed by the
distal set of links that have full freedom to move in
the operational space. The macro-manipulator has at
least one degree of freedom.

Let Ao be the pseudo kinetic energy matrix
associated with the macro-/mini-manipulator and
Amoy the operational space kinetic energy matrix
associated with the mini-manipulator. Our analysis of
macro-/mini-manipulator systems has shown"® the
inertial properties of these systems to possess the
following characteristic :

Theorem 2: (Reduced Effective Inertia)

The operational space pSeudo kinetic energy
matrices Ao (combined mechanism), and Amy (mini-
manipulator) satisfy

/‘k(/lo)g/lk(/lm(o)) s k=1,2,,m; (29)
where A:(+) denotes the " largest eigenvalue of (-),
ie, Au(+)< <A,

For all directions and configurations, the effective
inertia of a macro-/mini-manipulator system (see
Fig. 6a), is bounded above by the inertia of the mini-
manipulator alone (see Fig. 6b).

" A more general statement of Theorem 2 is that
the inertial properties of a redundant manipulator are
bounded above by the inertial properties of the struc-
ture formed by the smallest distal set of degrees of
freedom that span the operational space. The equality
of the inertial properties in Theorem 2 is obtained for
mechanisms that only involve prismatic joints"?.

6.1 Dextrous dynamic coordination

The dynamic characteristics of a macro-/mini-

manipulator system can be made to be comparable to

‘}MINI-

MANIPULATOR
)/ |
| i

MACRO-

1

1

1
MANIPULATOR &

’ o 1
a) ]

(

Fig.6 A macro- mini-manipulator system
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(and, in some cases, better than) those of the mini-
manipulator. The basic idea in approaching the con-
trol problem associated with coordinating a manipula-
tor and a mini-manipulator system is to treat the
manipulator and mini-manipulator as a single redun-
dant system. However, this type of control cannot be
directly applied to the macro/mini motion coordina-
tion problem. In effect, given the mechanical limits on
joint motions of the mini-manipulator, such a control-
ler would rapidly lead to joint saturation of the mini-
manipulator degrees of freedom.

The dextrous dynamic coordination we propose is
developed within the framework of redundant manipu-
lator control in operational space. It is based on
minimizing the deviation from the midrange joint
positions of the mini-manipulator. This minimization
is achieved using joint torques selected from the
dynamically consistent null space of Eq. (26). This
will eliminate any effect of the additional forces on
the primary task. Let 7. and g: be the upper and lower
bounds on the i joint position g.. We construct the
potential function

VDextrous( Q) = kdi=§+l<q.- L _2*— 4 >2 ; (30)
where k. is a constant coefficient. The gradient of this
function

T oextrous= — I Vbextrous 5 (31)
provides the required attraction®” to the mid-range
joint positions of the mini-manipulator. The interfer-
ence of these additional torques with the end-effector
dynamics is avoided by projecting them into the null
space of /7(g). This is ;

Fnd:[ln_]T(Q') f—T(Q)]Foextrous. (32)

In addition, joint-limit avoidance can be achieved
using an “artificial potential” function®®. Several
other internal motion behaviors have been discussed
in the context of controlling free-flying robotic
systems®. It is essential that the range of motion of
the joints associated with the mini-manipulator
accommodate the relatively slower dynamic response
of the arm. A sufficient margin of motion is required
to achieve dextrous dynamic coordination.

7. Multi-Effector/Object System

We now consider the problem of object manipula-
tion in a parallel system of N manipulators. The
effectors are assumed to be rigidly connected to the
manipulated object. The number of degrees of free-
dom of the parallel system will be denoted by #s.

In this article, we will only discuss the case of a
system of N non-redundant manipulators that have
all the same number of degrees of freedom, n. The
end-effectors are also assumed to have the same
number of degrees of freedom, m (m=n), as illus-
trated in Fig. 7. Under these assumptions, the number
of degrees of freedom of the parallel system in the
planar case (n=m=3) is ns=3.In the spatial case (%
=m=6), this number is ns=6. The extension to sys-
tems involving redundant manipulators is discussed in
Ref.(24).

7.1 Augmented object model

To analyze the dynamics of this multi-effector
system, we start by selecting the operational point as
a fixed point on the manipulated object. Because of
the rigid grasp assumption, this point is also fixed with
respect to the end-effectors. The number of opera-
tional coordinates, m, is equal to the number of
degrees of freedom, #s, of the system. Therefore,
these coordinates form a set of generalized coordi-
nates for the system in any domain of the workspace
that excludes kinematic singularities. Thus the kinetic
energy of the system is a quadratic form of the
generalized operational velocities, 1/2% TAe(x)x. The
mXm kinetic energy matrix Ae(x) describes the
combined inertial properties of the object and the N
manipulators at the operational point. Ae(x) can be
viewed as the kinetic energy matrix of an augmented
object representing the total mass/inertia at the oper-
ational point.

Now let A{x) be the kinetic energy matrix
associated with the i unconnected end-effector ex-
pressed with respect to the operational point and
Ar(x) the kinetic energy matrix associated object
itself. It has been shown¥ that

Fig.7 A multi-arm robot system
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Theorem 3: (Augmented Object)
The kinetic energy matrix of the augmented
object is

Ao(x)=Ar(x)+ i Adz). (33)

The use of the additive property of the augmented
object’s kinetic energy matrix of Theorem 3 allows to
obtain the system equations of motion from the equa-
tions of motion of the individual manipulators. The
augmented object equations of motion are
Aea(.l').f+ﬂe(.l‘, .i')+pe(.r)=Fea. (34)

The vector, ue(x, £), of centrifugal and Coriolis
forces also has the additive property

po(z, 2)=pc(z, 2)+ L ulz, 2); (35)

where pr(x, &) and u{x, &) are the vectors of cen-
trifugal and Coriolis forces associated with the object
and the 7 effector, respectively. Similarly, the grav-
ity vector is

pa(2)=pr(@)+ 2 pia), (36)

where p-(x) and p:x) are the gravity vectors as-
sociated with the object and the " effector. The
generalized operational forces F'¢ are the resultant of
the forces produced by each of the N effectors at the
operational point.

Fe=é F. (37)

The effector’s operational forces F: are generated by
the corresponding manipulator actuators. The gener-
alized joint torque vector I; corresponding to F; is
given by

ri=JXq)F;; K
where g is the vector of joint coordinates associated
with the *" manipulator and J/7(q:) is the Jacobian
matrix of the /"™ manipulator computed with respect
to the operational point. The dynamic decoupling and
motion control of the augmented object in operational
space is achieved by selecting a control structure
similar to that of a single manipulator,

F&=Ee(x)F*+ﬂe(x, i)+§a(x); (38)
where, Ae(x), fo(x, #), and Peo(x) represent the
estimates of Ae(x), ue(x, &), and peo(x). With a
perfect nonlinear dynamic decoupling, the augmented
object of Eq.(34) under the command of Eq.(38)
becomes equivalent to a unit mass, unit inertia object,
I, moving in the m-dimensional space,

Ini=F*, (39)
Here, F* is the input to the decoupled system. The
control structure for constrained motion and active
force control operations is similar to that of a single
manipulator.

The control structure in Eq.(38) provides the net
force F'= to be applied to the augmented object at the
operational point for a given control input, F*. Due to
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the actuator redundancy of multi-effector systems,
there is an infinity of joint-torque vectors that corre-
spond to this force.

In tasks involving large and heavy objects, a
useful criterion for force distribution is the minimiza-
tion of total actuator effort?. However, dextrous
manipulation requires accurate control of internal
forces. This problem has received wide attention and
algorithms for internal force minimization® and
grasp stability®® have been developed. To address
the problem of internal force characterization, a
physically-based virtual linkage model has been
proposed®®” to describe and control internal forces and
moments in multi-grasp tasks.

8. Conclusion

In this review, we have presented the various
models and methodologies developed in the opera-
tional space framework. The basis of this framework
is a model that describes the dynamics of a manipula-
tor in terms of its behavior at the end-effector. This
model provides the foundation for a unified approach
to task-level motion and force control.

Discussing the extension of this approach to
redundant manipulator systems, we have presented
the model that describes dynamic behavior at the
end-effector of a redundant manipulator. We have
also presented the dynamically consistent force/tor-
que relationship for these systems. With this relation-
ship, joint torques are decomposed into two dynami-
cally decoupled control vectors: joint torques corre-
sponding to forces acting at the end-effector; and
joint torques that only affect internal motions. Using
this decomposition, the end-effector can be indepen-
dently controlled by operational forces, while internal
motions can be controlled by joint torques that are
guaranteed not to alter the end-effector’s dynamic
behavior. In addition to the control of redundant
manipulator, these models have been the basis for a
new strategy for dealing with kinematic singularities.
With this strategy, a manipulator at a singular
configuration is treated as a redundant system in the
subspace orthogonal to the singular direction.

Qur analysis of inertial properties for macro-
/mini-manipulator systems has shown that, for all
directions and configurations, the effective mass/iner--
tia of a macro-/mini-manipulator is less than or equal
to the inertia associated with the mini-manipulator
structure, considered alone. To allow the mini-
structure’s high bandwidth to be fully utilized in wide
range operations, we have proposed a dextrous
dynamic coordination strategy which uses the
system’s internal motions to minimize deviation from
the midrange joint positions of the mini-manipulator.
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Effective implementation of this strategy relies on
preventing any effects of the internal motion from
influencing the primary end-effector task. This is
achieved by using the dynamically consistent relation-
ship between joint torques and end-effector forces.

Analyzing the inertial properties of multi-arm
robot systems, we have presented an important addi-
tive property of parallel structures. It has been shown
that the inertial properties perceived at the manipulat-
ed object are given by the sum of the inertial prop-
erties associated with each individual manipulator
and the inertial properties of the unconstrained object,
all expressed with respect to the same operational
point. Centrifugal, Coriolis, and gravity forces have
also been shown to possess this additive property.
Combining the dynamics of the individual manipula-
tors and object, we have proposed the augmented
object as a model of the dynamics at the operational
point for the multi-arm robot system.

By providing task - level models of robot
dynamics, the operational space framework answers
many of the deficiencies associated with joint space
formulations. It is important to emphasize the fact
that operational space implementations rely to a large
extent on the robot’s ability to achieve effective con-
trol of joint torques. This capability is, in fact, a key
requirement for any dynamic control implementation
—including joint space dynamic control implementa-
tions. With today’s robots, this ability is considerably
restricted by the nonlinearities and friction inherent in
their actuator-transmission systems. However, recent
trends and current developments suggest that the new
generation of robot system can be expected to provide
improved joint torque control capabilities that would
clearly enable more effective implementations of
advanced dynamic control techniques.
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