Robotics for Challenging

Environments, Proc. ASCE '94

New York, pp. 10-18

Real-time Motion Vision for Robot Control

John Woodfill, Ramin Zabih and Oussama Khatib

Robotics Laboratory,
Computer Science Department,
Stanford University, Stanford California

Abstract

The control of robots in unstructured environments
demands real-time, general purpose vision. We have
designed a visual tracking system which makes use of
motion to pick out and track moving objects without
requiring information about their shape. The vision
system has been implemented, and runs in real-time
on a graphics accelerator in a Sun workstation. It
has been used to provide visual feedback for a Puma
manipulator controlled in operational space. The ma-
nipulator keeps a camera trained on a moving object.
This robotic camera robustly follows people walking
around in an unmodified room.

1 Introduction

Real-time sensor-based control of robots has been
a major research theme in Robotics. Visual sens-
ing has enormous potential for providing information
about the environment. However, computational vi-
sion has proven to be very difficult, especially under
the real-time constraint. As a result, most robots
that have used real-time visual feedback have de-
pended upon highly structured environments. For
an unstructured environment, real-time general pur-
pose vision is required.

In this paper we describe a general purpose vision
system which performs real-time tracking of moving
objects. The vision system is capable of finding and
tracking objects whose shape is not specified in ad-
vance, by relying purely on their motion. This can
be done even from a moving camera.’

The vision system runs in real time on a graphics
accelerator in a Sun workstation. It processes 8-bit
gray level images whose resolution is 128 by 128 at
10-15 frames per second. The basis for the motion
tracking is a dense optical flow computation which is
performed at every point in the image; this can also
be used to supply stereo depth information.

It is, of course, easy to detect a moving object from a
stationary camera by looking for intensity changes.

In this paper we begin with a survey of some related
work, and then turn to the vision system. In sec-
tion 3.1 we present the overall system architecture.
There are three major components: real-time mo-
tion and stereo algorithms, described in section 3.2;
a technique for finding a moving object, discussed in
section 3.4; and an algorithm for tracking a moving
object, described in section 3.3. Finally, in section 4
we describe the use of the vision system to control a
robot camera.

2 Related work

Because real-time computer vision is so difficult, most
visually controlled robots have relied on highly struc-
tured environments. These robots have often per-
formed impressive tasks, such as playing ping-pong
[1] or juggling a balloon [10]. However, the visual
task that these robots handle is extremely simple bi-
nary vision; they find a white object against a black
background. These robots are thus limited to care-
fully constructed workspaces.

However, many potentially useful robotic tasks re-
quire real-time visual feedback in unstructured en-
vironments. Examples of such tasks include con-
struction, autonomous outdoor navigation and office
cleaning. These tasks require real-time general pur-
pose vision.

Some recent attempts have been made to provide
real-time visual capabilities by using special-purpose
hardware. Inoue et. al. [4] and Nishihara [7], for
example, have used special-purpose processing chips
for real-time stereo and motion. A related approach
has been taken by researchers such as Coombs [2]
and Matthies [6], who have obtained real-time stereo
using image-processing boards from Datacube.

3 Real-time motion tracking

In this paper we describe a vision system which picks
out a moving object and keeps track of its camera-

Figure 1: An example of the input and output of the
tracking system

relative extent in the scene. The system is general
enough to be suited for unstructured environments,
as there is no requirement that the object’s appear-
ance be specified in advance. In particular, it can
handle objects of unknown or changing shape (i.e.,
unmodeled or non-rigid objects), as long as they are
moving.

The input to the vision system is a stream of images.
The output is a stream of binary images. For each
input image, the output, called an object bitmap, in-
dicates the image extent of the tracked object. A typ-
ical image, with the corresponding output, is shown
in figure 1, which shows a swinging mug.?

3.1 System architecture

The visual capabilities of our system can be divided
into motion primitives that take images as input, and
the higher level operations tracking and segmenta-
tion that use the results of the primitive computa-
tions. The overall architecture of the vision system
can be seen in figure 2. Arrows signifying data paths
show that information flows primarily in a single di-
rection, from images (which enter at left) to object
centroids (which exit at right).

The motion measurement algorithm computes a dense
optical flow field, which describes the motion of scene
elements between consecutive images. Tracking uses
the optical flow fields to update the position of an
object as it moves, while segmentation uses them to
identify a moving object. The control module re-
quests that segmentation find a moving object, and
passes the result along to be tracked.

We will describe the motion measurement algorithm
(which also computes real-time stereo depth fields)
first, followed by tracking and then segmentation.

2The vision system is capable of tracking several objects at
the same time, but for simplicity of explanation we will focus
on a single tracked object.

Tracking

Optical Object
—| Motion Flow Control
. Bitmaps
Fields
Segmentation

Figure 2: Vision system architecture

The discussion of motion, tracking and segmentation
is terse. A more complete discussion appears in [9].

3.2 Motion measurement

Given a temporally sequential pair of images, the
motion computation must produce a dense optical
flow field that determines for each scene element in
the first image, a corresponding scene element in
the second image (i.e., where it has moved). The
stereo depth task is similar, but starts with a stereo
pair and produces a horizontal displacement map in
which smaller displacements correspond to greater
depth.

Our motion and stereo computation use an area based
approach that relies on correlating intensity values.
Area based motion and stereo algorithms usually rely
on two criteria to determine the most likely displace-
ment for each pixel: how similar are the local area
on the first image and its corresponding local area on
the second image, and (because things in the world
tend to cohere) how well do neighboring points agree
on their displacement. These two criteria need to be
combined to determine motion at each pixel.

One approach to computing motion or depth fields
is to define a global optimality criterion and then to
optimize. Poggio [8] suggests, for example,

J[19%6 + (1u(e.9) = In(z + D(z,9),9))
+ XMVD)?] dzdy

as a regularization functional for stereo depth, where
I, and IR are the left and right images, D is the
disparity map, X is a constant, G is a Gaussian and
+ denotes convolution. The first term measures the
goodness of match, while the second term measures
smoothness of the resulting disparities. A depth map
can be generated from a stereo pair by numerical
minimization.

Given our concern with real-time performance, our
approach to combining the two criteria is direct. Our
algorithm has two phases: first, we find a good initial
motion estimate using Sum of Squared Differences
(SSD) correlation; then we smooth these motion es-
timates using mode filtering.

Initially, we find for each pixel on the image I; the
best corresponding pixel on the next image Jk41.
This correspondence is determined using SSD cor-
relation on intensity values for each point in a small
local radius. For two consecutive images I} and Ix41,
given a correlation window A, we compute an SSD
measure of the dissimilarity of the pixels p and p’

E(p,p) = S (Ielp+6)— I (p' + 8))%
Y=FAN

The SSD motion estimate will be for the pixel p to
move to the pixel p’ within a local radius of p min-
imizing E(p,p'). (In our implementation the local
radius is an ellipse containing 37 pixels.)

Our motion computation uses a correlation window
A that consists of only 5 pixels (the center pixel
and its 4-connected neighbors). This is considerably
smaller than typical correlation windows. The small
window size allows us to handle rotations and non-
uniform motions.

The disadvantage of a small window size is that it can
give results that are not smooth. We handle this by a
second stage in our algorithm, where the initial mo-
tion estimate is smoothed to enforce neighborhood
agreement. The final optical flow field is generated
by determining for each pixel, the most popular ini-
tial disparity estimate surrounding the pixel. This
step, called mode filtering, preserves discontinuities
at edges while smoothing the optical flow fields to
reduce noise.

The output of the motion measurement algorithm is
an optical flow field, which can also be viewed as a
map from Ij to Ix41. Both phases of the motion
computation can be computed efficiently without it-
eration.

It is worth noting that Inoue [4] and Nishihara [7]
also rely on correlation to produce real-time motion.
Inoue’s work is particularly close to ours in its re-
liance on gray-level correlation (although his corre-
Jation measure is |z — y| rather than (z — y)?, which
we use). Nishihara relies on binary correlation of
the sign bit after convolving with a Laplacian. Both
approaches differ from ours in their use of large cor-
relation windows. In addition, we produce a motion
estimate at every point in the image, while Inoue and
Nishihara produce a sparser (but still dense) output.

3.3 Tracking

The goal of tracking is to maintain an object’s lo-
cation across multiple images. Due to the need for
real-time performance, the representations used in
the vision system are all retinotopic maps at the same
scale as the image. In particular a tracked object —
the representation of the object being tracked — is
merely an arbitrary set of pixels (sometimes called
an object bitmap).

The tracking algorithm is an iterative one. On each
iteration, it takes as input an optical flow field show-
ing the motion between images I and Ip4+1, and an
object bitmap representing the location of an object
in image I;. It produces as output a new tracked ob-
ject representing the location of the object in image
Ik+1 .

The tracking algorithm has two steps: projecting the
tracked object through the optical flow field, and im-
proving the object bitmap by using motion bound-
aries. We will describe each in turn.

Projecting the tracked object through the optical
flow field is a simple notion. The optical flow field is
a map from pixels to pixels, that determines for each
pixel on the first image, a corresponding successor
pixel on the second image. The input tracked ob-
ject is a set of pixels on the first image. The output
tracked object, the result of projection, is the set of
successor pixels of pixels in the input tracked object.

The need to improve the estimate of the object’s lo-
cation arises because the tracking algorithm is it-
erative. The input tracked object on one iteration
results from previous motion computations and pro-
jections. The optical flow field tends to be slightly
inaccurate, and projecting through the optical flow
field tends to distort the tracked object. Improving
the tracked object is possible since an object mov-
ing in a scene will tend to produce discontinuities in
the optical flow field at its perimeter. The adjust-
ment step attempts to align the edges of the tracked
object with these motion discontinuities.

This tracking algorithm has been shown to work on a
large variety of real image sequences. It works both
on indoor and outdoor scenes, although it is impor-
tant that the scene have texture.

Because the tracking algorithm is applied iteratively,
it needs to be initialized: the tracked object in the
initial image must be somehow selected. Further-
more, the tracking algorithm occasionally loses the
moving object, either because the object stops for
too long, or due to camera noise, or for some other
reason. Here too it is necessary to find the approxi-

mate location of a moving object so that the tracking
algorithm can track it. We refer to this process as
segmentation.

3.4 Finding moving objects

Segmentation, that is, picking out a moving object
in the scene, is of critical importance to our system.
The task cannot be performed by hand — there is
no time. Nor can static segmentation cues such as
intensity or texture be relied on, as we intend to deal
with arbitrary moving objects. Qur approach is sim-
ilar to the use of gray-level histograms for segmen-
tation [3], but we use motion rather than gray-levels
as the segmentation modality. The pixels in a scene
containing a moving object will tend to fall into two
classes when grouped by their trajectories. The pix-
els corresponding to the moving object will tend to
have moved along with the object, while the pixels
corresponding to the rest of the scene will tend to
have moved in opposition to camera motion.

The optical flow field generated from a single pair of
images does not tend to distinguish the motions of
the object from the rest of the scene clearly. How-
ever, composing the motions from several sequential
pairs of frames to form cross temporal trajectories
generates a reasonably clusterable histogram, pro-
vided that the object has been moving. Once the
trajectories have been histogrammed, the motions
under the largest peak are considered to be the mo-
tion of the background, and the motions under the
second largest peak to be those of the object. Pixels
that have exhibited the motions determined to cor-
respond to the motion of the object are labeled as
part of the tracked object.

This histogramming approach works quite well in
practice, although it has some limitations. Objects
must move over the course of a couple of seconds
in order to be found. In addition, the segmenta-
tion scheme is restricted to certain camera motions,
namely rotations about the camera center of projec-
tion. We believe that with real-time stereo it will be
possible to handle arbitrary camera motions in the
near future.

3.5 Implementation notes

The algorithms we have developed are well-suited
for efficient implementation because of their uniform
and local nature. We make extensive use of dynamic
programming to share intermediate results between
neighboring pixels.

VX/MVX Motorola 88k
Motion Robot
Vision = Motion
System Trajectory Control
A
Positions Torques
Y

Controller Interface

Figure 3: The robotic camera system

The tracking algorithm runs on a VX/MVX graph-
ics accelerator in a Sun workstation. The VX/MVX
contains 5 Intel i860 processors, each of which is ca-
pable of 40 MIPS. The motion computation is done
on 4 processors, which divide the image into (over-
lapped) slices. The remainder of the computation is
done on a single processor.

Figure 4 shows a sequence of images captured while
the robotic camera was operating. The white line
shows the outline of the tracked object. In this se-
quence the camera is panning to the right to follow
the person.

4 The robotic camera

We have used the visual tracking system to provide
real-time feedback for a robotic camera. We have
configured a Puma 560 to rotate a camera to follow
a moving object tracked by the vision system.

The architecture of the robotic camera is shown in
figure 3. The camera’s video signal is sent to the
vision system, which runs on a VX/MVX graphics
accelerator. The vision system computes the trajec-
tory of the object’s centroid, and send it via shared
memory to a Motorola 88k which is used to control
the robot. The robot motion controller has been im-
plemented using COSMOS, an object-level control
system based on the operational space approach [5].
The operational point is the camera center of projec-
tion.

4.1 Handling latency

One complication arises in the control of the robot,
due to the latency involved in the vision system. By
the time an object centroid has been computed, as

much as a quarter second may have passed. So the
object centroid that is emitted by the tracking service
specifies where the object was relative to where the
camera was pointed when the image was captured a
quarter second ago. There is no way to get around
the fact that the information is old. However, given
that the camera may be panning, information about
object positions relative to the camera heading of
some time ago is quite useless, unless the camera
heading at the time of image capture is known.

Thus, the robot systems are set up so that when-
ever an image is captured, the current heading of
the camera is also recorded. When a new ob ject cen-
troid is produced, it is combined with the recorded
camera-heading information to compute a heading
that would have been correct when the centroid was
computed. This heading is out of date since it says
how the camera should have pointed when data that
produced the current centroid was captured. How-
ever, it is the best information available, and hence
is specified as the current desired heading for the
camera.

An alternative scheme would involve predicting the
object’s position, based on its velocity or perhaps
its history. We have not yet investigated prediction-
based approaches.

5 Conclusions

We have described a real-time vision system which
can track objects based on their motion. This pro-
vides a basic capability for visual feedback, which can
be used for controlling robots. In addition, we be-
lieve that our tracking system can supply a bottom-
level visual service, and that higher level visual ca-
pabilities can be constructed that make use of the
information our system supplies.

Acknowledgements

John Woodfill has been supported by a fellowship
from the Shell Corporation. Ramin Zabih has been
supported by a fellowship from the Fannie and John
Hertz Foundation. We wish to acknowledge addi-
tional financial support from Xerox PARC, CSLI,
SRI and CIFE. We are grateful to Harlyn Baker,
David Heeger, Dan Huttenlocher, and Jim Mahoney
for useful comments in the course of this work. Alain

Fidani and Jon Goldman provided help with the robots.

References

[1] Russell Andersson. A Robot Ping-Pong Player:
An Ezperiment In Real-Time Intelligent Con-
trol. MIT press, 1988.

[2] David Coombs and Christopher Brown. Real-
time smooth pursuit tracking for a moving
binocular head. In Proceedings of IEEE Confer-
ence on Computer Vision and Pattern Recogni-
tion, 1992.

[3] Berthold Horn. Robot Vision. The MIT Press,
1986.

[4] Hirochika Inoue, Tetsuya Tachikawa, and
Masayaki Inaba. Robot vision system with a
correlation chip for real-time tracking, optical
flow and depth map generation. ICRA, pages
1621-1626, 1992. Nice, France.

[5] Oussama Khatib. A unified approach for mo-
tion and force control of robot maniuplators:
The operational space formulation. IEEE Jour-
nal of Robotics and Automation, RA-3(1):43-53,
February 1987.

[6] Larry Matthies. Stereo vision for planetary
rovers: Stochastic modeling to deformation of
image curves. International Journal of Com-
puter Vision, 8(1), 1992.

[7] H. Keith Nishihara. Practical real-time imaging
stereo matcher. Optical Engineering, 23(5):536-
545, Sept-Oct 1984. Also in Readings in
Computer Vision: Issues, Problems, Princi-
ples, and Paradigms, edited by M.A. Fischler
and O.Firschein, Morgan Kaufmann, Los Altos,
1987.

[8] Tomaso Poggio, Vincent Torre, and Christof
Koch. Computational vision and regularization
theory. Nature, 317:314-319, 1985.

[9] John Woodfill. Motion Vision and Tracking
for Robots in Dynamic, Unstructured Environ-
ments. PhD thesis, Stanford University, August
1992.

[10] Brian Yamauchi and Randal Nelson. A
behavior-based architecture for robots using
real-time vision. In IEEE International Confer-
ence on Robotics and Automation, pages 1822~

1827, 1991.

Frame 17 Frame 18 Frame 19 Frame 20

Figure 4: Robotic camera data

